Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:26:31.801Z Has data issue: false hasContentIssue false

Secondary Phases Precipitation in the 2510 Duplex Stainless Steel

Published online by Cambridge University Press:  01 February 2011

Arturo Reyes
Affiliation:
Corporacion Mexicana de Investigacion en Materiales COMIMSA, Fracc. Saltello 400, Saltillo, Mexico.
Irene Calliari
Affiliation:
Engineering Chemical Process Dept. DPCI, University of Padua, Via Marzolo 9, 35110 Padua, Italy.
Emilio Ramous
Affiliation:
Engineering Chemical Process Dept. DPCI, University of Padua, Via Marzolo 9, 35110 Padua, Italy.
Michela Zanellato
Affiliation:
Engineering Chemical Process Dept. DPCI, University of Padua, Via Marzolo 9, 35110 Padua, Italy.
Mattia Merlin
Affiliation:
Engineering Dept., University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy.
Get access

Abstract

A lot of duplex and super duplex stainless steels are prone to secondary phases but with different sequence and kinetic which depend on the chemical composition and thermo-mechanical history of the steel. In this paper the results of secondary phase's determination in a welding grade 2510 duplex steel, heat treated at 850–1050°C for 3–30 min are presented. The precipitation stars at grain boundaries with a consistent ferrite transformation for short times. The noses of the TTP curves are at 1000°C (sigma phase) and at 900°C (chi phase) with a partial transformation of chi to sigma, as evidenced in 2205 and 2507 grades.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nilsson, J.O., Mat. Sci. Techn. 8, 685 (1992).Google Scholar
2. Nilsson, J.O., Kangas, P., Karlsson, T. and Wilson, A., Met. Mat. Trans. 31A, 35 (2000).Google Scholar
3. Sieurin, H., Sandstrom, R., Mat. Sci. Eng., A444, 271 (2007).Google Scholar
4. Ahn, Y.S., Kang, J.P., Mater. Sci. Technol. 16, 382 (2000).Google Scholar
5. Kaçar, R. and Baylan, O., Mat. Des. 25, 317 (2004).Google Scholar
6. Chen, T.H., Weng, K.L., and Yang, J.R., Mat. Sci. Eng., A338, 259 (2002).Google Scholar
7. Redjaimia, A., Proult, A., Donnadieu, P., Morniroli, J.P., J. Mat. Sci. 39, 2371 (2004).Google Scholar
8. Kim, Y.J., Clumbley, L.S. and Gleenson, B., Scri. Mat. 50, 1351 (2004).Google Scholar
9. Gunn, R.N., Duplex America 2000, Houston, USA (2000).Google Scholar
10. Calliari, I., Ramous, E. and Zanesco, M., J. Mat. Sci. 41, 7643 (2006).Google Scholar
11. Calliari, , Pellizzari, M. and Ramous, E., Mat. Sci. Technol. 26 (2009) (in press)Google Scholar
12. Calliari, I., Dabalà, M., Ramous, E. and Straffelini, G., Mat. Sci. Forum 7, 419 (2009).Google Scholar
13. Migiakis, K., Papadimitriou, G.D., J. Mater. Science 44, 6372 (2009).Google Scholar
14. Gregori, A., Nilsson, J.O., Bonollo, F., Material Science Forum 318, 829 (1999).Google Scholar