Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:34:32.730Z Has data issue: false hasContentIssue false

Secondary Cation Effects On Sodium And Potassium Zeolite Syntheses at Si/Al2 = 9: Part 1- Phase Development in the Sodium System

Published online by Cambridge University Press:  28 February 2011

David E. W. Vaughan*
Affiliation:
Exxon Research and Engineering Company, Route 22 East, Annandale, N.J., U.S.A., 08801
Get access

Abstract

The influence of Group 1A elements, and various alkyl ammonium cations, on a metastable faujasite synthesis at a silica/ alumina ratio of 9 are reported. Co-crystallization of faujasite, gmelinite and gismondine (P) occurs in reactions with Li+, K+ and Rb+, but the trapping of Cs+ in the FAU sodalite cage (CSZ-1/ CSZ-3) inhibits subsequent reactions to GIS, and blocks the formation of GME. Morphological effects of these cations include platelet formation and the promotion of small crystals. TMA addition promotes mazzite analogues; and DEDM stabilizes FAU, and at 140°C., induces the crystallization of ECR-1. The derivation of all these phases from a restricted number of secondary building units is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Barrer, R.M., “Hydrothermal Chemistry of Zeolites; Academic Press London, (1982).Google Scholar
2. Engelhardt, G. and Michel, D., “High Resolution Solid State NMR of Silicates and Zeolites”, J.Wiley London, Ch.3, 75 (1987).Google Scholar
3. Dutta, P.K. and Shieh, D.C., J. Phys. Chem., 90 2331(1986).CrossRefGoogle Scholar
4. McCormick, A.V., Bell, A.T. and Radke, C.J., Proc. 7th. Intl. Zeolite Conf., Ed.Murakami, Y., lijima, A. and Ward, J.W., Kodansha/Elsevier, 247(1986).Google Scholar
5. Groenen, E.J.J., Kortbeek, A.G.T.G., Mackay, M. and Sudmeijer, O., Zeolites, 5, 403 (1986).CrossRefGoogle Scholar
6. Bodart, P., Nagy, J.B., Gabelica, Z. and Derouane, E.G., J.Chim.Phys.-Chim.Biol., 83, 777 (1986).CrossRefGoogle Scholar
7. Maher, P.K.. Albers, E.W. and McDaniel, C.V., U.S. Patent 3 671,191 (1972).Google Scholar
8. Vaughan, D.E.W., Edwards, G.C. and Barrett, M.G., U.S. Patent 4,340,573 (1982).Google Scholar
9. Vaughan, D.E.W., U.S. Patent 4,657,749 (1986).Google Scholar
10. Breck, D.W., ”Zeolite Molecular Sieves”, J.Wiley New York, (1974).Google Scholar
11. Rollmann, L.D., ”Zeolites: Science and Technology” Ed. Ribeiro, F.R., Rodrigues, A.E., Rollmann, L.D. and Naccache, C., NATO ASI Ser. E, No.80, 109 (1984).CrossRefGoogle Scholar
12. Lok, B.M., Cannan, T.R. and Messina, C.A., Zeolites,.3, 282 (1983).CrossRefGoogle Scholar
13. Ciric, J., U.S. Patent 3,923,639 (1975).Google Scholar
14. Flanigen, E.M. and Kellberg, E.R., U.S. Patent 4 241,036 (1980); British Patent, 1,178,186 (1970).Google Scholar
15. Kerr, G.T. and Kokotailo, G., J.Amer.Chem. Soc., 83 4675 (1961).CrossRefGoogle Scholar
16. Albers, E.W. and Vaughan, D.E.W., U.S. Patent 3,947,482 (1976).Google Scholar
17. Albers, E.W., Edwards, G.C. and Vaughan, D.E.W., U.S. Patent 3,755,538 (1973).Google Scholar
18. Edwards, G.C., Vaughan, D.E.W. and Albers, E.W., U.S.Patent 4,175,059 (1979).Google Scholar
19. Dewaele, N., Bodart, P., Gabelica, Z. and Nagy, J.B., ”Zeolites: Synthesis, Structure, Technology and Applications.”. Ed. Drzaj, B., Hecevar, S., and Pejovnik, S., Elsevier Press (Amsterdam), 119, (1985).Google Scholar
20. Meier, W.M. and Olson, D.H., ”Atlas of Zeolite Structures”2nd. Edition, Butterworth Press (London), (1987).Google Scholar
21. Ciric, J., U.S. Patent 3,411,874;3,415,736 (1968).Google Scholar
22. Kokotailo, G.T. and Ciric, J., ”Molecular Sieve Zeolites -1”, Ed. Flanigen, E.M. andSand, L.B., Amer. Chem. Soc. Adv. Chem. Ser. 101, 109 (1971).CrossRefGoogle Scholar
23. Vaughan, D.E.W. and Barrett, M.G., U.S. Patent 4,333,859 (1982).Google Scholar
24. Barrett, M.G. and Vaughan, D.E.W., U.S. Patent 4,309,313 (1982).Google Scholar
25. Treacy, M.M.J., Newsam, J.M., Beyerlein, R.A., Leonowicz, M.E. and Vaughan, D.E.W., J.Chem. Soc. Chem. Commun., 1211 (1986).CrossRefGoogle Scholar
26. Beyerlein, R.A., Newsam, J.M., Melchior, M.T. and Malone, H., J.Phys.Chem., accepted for publ., (1987).Google Scholar
27. Treacy, M.M.J., Newsam, J.M., Vaughan, D.E.W., Beyerlein, R.A., Rice, S.B. and de Gruyter, C.B., Mater. Res. Soc. Symp. Proc. – this volume.Google Scholar
28. Thomas, J.M., Audier, M., and Klinowski, J., J. Chem. Soc. Chem. Commun.,1221, (1981).CrossRefGoogle Scholar
29. Millward, G.R., Thomas, J.M., Ramdas, S. and Barlow, M.T., Proc. 6th. Intl. Zeolite Conf., Ed. Olson, D.H. and Bisio, A., Butterworth, London,793, (1984).Google Scholar
30. Sherman, J.D., ”Molecular Sieves II”, Amer.Chem.Soc. Symp.Ser. 40, Ed.Katzer, J.R., 30 (1977).CrossRefGoogle Scholar
31. Vaughan, D.E.W. and Strohmaier, K.G., Proc. 7th. Intl. Zeolite Conf., Ed.Murakami, Y., lijima, A. and Ward, J.W., Kodansha/Elsevier (Tokyo),207 (1987).Google Scholar
32. Kokotailo, G.T. and Lawton, S.L., Nature 203, 621, (1964)CrossRefGoogle Scholar
33. Vaughan, D.E.W., U.S. Patent 4,714,601 (1987).Google Scholar
34. Leonowicz, M.E. and Vaughan, D.E.W., Nature, 329, 819 (1987).CrossRefGoogle Scholar
35. Kokotailo, G., Proc. 6th. Intl. Zeolite Conf., Ed. Olson, D.H. and Bisio, A., Butterworth, London,760, (1984).Google Scholar