Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T20:29:54.108Z Has data issue: false hasContentIssue false

A Scrolled Sheet Precursor Route to Niobium Oxide Nanotubes

Published online by Cambridge University Press:  26 February 2011

Yoji Kobayashi
Affiliation:
[email protected], The Pennsylvania State University, Department of Chemistry, 104 Chemistry Building, University Park, PA, 16802, United States
Hideo Hata
Affiliation:
[email protected], The Pennsylvania State University, Department of Chemistry, University Park, PA, 16802, United States
Thomas E. Mallouk
Affiliation:
[email protected], The Pennsylvania State University, Department of Chemistry, University Park, PA, 16802, United States
Get access

Abstract

Potassium hexaniobate (K4Nb6O17) is one of the few relatively well-studied oxides which, upon exfoliation, rolls up into scrolls almost quantitatively with monodisperse length (∼300 nm) and diameter (30 nm). The tubes have high surface area (250-300 m2/g) and a wall thickness of 2-3 nm. These H4Nb6O17 scrolls were converted to Nb2O5 via a thermal dehydration process, yielding high surface area (150-200 m2/g) Nb2O5 nanotubes. Despite extensive atomic rearrangement during dehydration at 400-450 °C, little sintering is occurs, and so the tubular morphology is retained. Attempts to conduct further reactions to obtain LiNbO3 and KNbO3 nanotubes from reaction with molten alkali salts failed to yield the intended nanotubular oxides.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Saupe, G. B., Waraksa, C. C., Kim, H.-N., Han, Y. J., Kaschak, D. M., Skinner, D. M. and Mallouk, T. E., Chem. Mater. 12, 15561562 (2000).Google Scholar
2. Du, G., Chen, Q., Yu, Y., Zhang, S., Zhou, W. and Peng, L.-M., J. Mater. Chem. 14, 14371442 (2004).Google Scholar
3. Viculis, L. M., Mack, J. J. and Kaner, R. B., Science 299, 1361 (2003).Google Scholar
4. Li, Y. D., Li, X. L., He, R. R., Zhu, J. and Deng, Z. X., J. Am. Chem. Soc. 124, 14111416 (2002).Google Scholar
5. Du, G. H., Peng, L.-M., Chen, Q., Zhang, S. and Zhou, W. Z., Appl. Phys. Lett. 83, 16381640 (2003).Google Scholar
6. Gasperin, M. and Bihan, M. T. Le, J. Solid State Chem. 43, 346 (1982).Google Scholar
7. Schafer, H., Gruehn, R. and Schulte, F., Angew. Chem., Int. Ed. 5, 4052 (1966).Google Scholar
8. Kato, K. and Tamura, S., Acta Crystallogr., Sect. B: Struct. Sci. B31, 673677 (1975).Google Scholar
9. Tamura, S., Kato, K. and Goto, M., Z. Anorg. Allg. Chem. 410, 313315 (1974).Google Scholar
10. Weissman, J. G., Ko, E. I., Wynblatt, P. and Howe, J. M., Chem. Mater. 1, 187193 (1989).Google Scholar
11. Gatehouse, B. M. and Wadsley, A. D., Acta Cryst. 17, 15451554 (1964).Google Scholar