Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-18T21:53:08.342Z Has data issue: false hasContentIssue false

Screening and Fabrication of Half-Heusler Phases for Thermoelectric Applications

Published online by Cambridge University Press:  01 February 2011

Wilfried Wunderlich
Affiliation:
[email protected], Tokai University, Fac. Eng.,, Mat. Sci.Dept.,, Hiratsuka-shi, Kanagawa-ken, Japan
Yuichiro Motoyama
Affiliation:
[email protected], Tokai University, Fac. Eng.,, Mat. Sci.Dept.,, Hiratsuka-shi, Kanagawa-ken, Japan
Get access

Abstract

Half-Heusler phases have gained recently much interest as thermoelectric materials. Screening of possible systems was performed by drawing their stability region in a three-dimensional Pettifor map. The fabrication of Half-Heusler phases requires three steps, surface activation of the raw material by ball milling, arc-melting of pressed pellets and finally long-term annealing treatment in a vacuum furnace. On doped TiCoSb specimens, Seebeck coefficients of 0.1 mV/K, on NiNbSn 0.16 mV/K were measured, although the microstructure was not yet optimized.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[2]. Nolas, G.S., et.al., MRS Bulletin 31 199205 (2006); US Patent 6207888 (27.03.2001)Google Scholar
[3]. Wunderlich, W., Ohta, H., and Koumoto, K., arXiv/cond-mat0510013 (to be published)Google Scholar
[4]. Lee, K.H., Muna, Y., Ohta, H., and Koumoto, K., Appl. Phys. Exp. 1 015007 (2008)Google Scholar
[5]. Yamamoto, M., Ohta, H. and Koumoto, K., Appl.Phys.Lett. 90 072101 (2007)Google Scholar
[6]. Sjakste, J., Vast, N., and Tyuterev, V., Phys. Rev. Lett. 99 236405 (2007)Google Scholar
[7]. Culp, S.R., Poon, S.J., Tritt, T.M., et al., Appl. Phys. Lett. 88 042106 (2006)Google Scholar
[8]. Sakurada, S., and Shutoh, N., Appl. Phys. Lett. 86 082105 (2005)Google Scholar
[9]. Sekimoto, T., Kurosaki, K., Muta, H., and Yamanaka, S., J. All. Comp., 407 326 (2006)Google Scholar
[10]. Pettifor, D.G., and Podlucky, R., Phys. Rev. Lett. 53 1080 (1984)Google Scholar
[11]. Ranganathan, S., Inoue, A., Acta Mat. 54 3647 (2006)Google Scholar
[12]. FindIt, Inorganic Crystallographic database Version 1.3.3, NIST Gaithersburg / FIZ (2004)Google Scholar
[13]. Kresse, G., and Hafner, J., Phys. Rev. B 49 14251 (1994).Google Scholar
[14]. Wunderlich, W., Solid-State Electronics 52 1082 (2008); (and results to be published)Google Scholar
[15]. Aoki, Y., and Wunderlich, W., Proc. Jap. Inst. Met. 141 315 (9.2007); 142 329 (3.2008)Google Scholar
[16]. Amornpitoksuk, P., and Suwanboon, S., J. Alloy Comp. 462 267 (2008)Google Scholar
[17]. Wunderlich, W., J. Nucl. Mat. (in print, Doi: 10.1016/j.jnucmat.2009.01.007)Google Scholar