Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:39:13.379Z Has data issue: false hasContentIssue false

Schottky Properties of Tungsten Compounds Refractory Contacts on n-GaAs Fabricated by Ion Beam Assisted Deposition

Published online by Cambridge University Press:  26 February 2011

C. S. Park
Affiliation:
Electronics and Telecommunications Research Institute P.O.Box 8 Daeduk Danji, Daejon 305–350, Korea KAIST, 373–1 Kusong-Dong, Daejon 305–701, Korea
J. S. Lee
Affiliation:
Electronics and Telecommunications Research Institute P.O.Box 8 Daeduk Danji, Daejon 305–350, Korea KAIST, 373–1 Kusong-Dong, Daejon 305–701, Korea
J. W. Lee
Affiliation:
Electronics and Telecommunications Research Institute P.O.Box 8 Daeduk Danji, Daejon 305–350, Korea KAIST, 373–1 Kusong-Dong, Daejon 305–701, Korea
J. Y. Kang
Affiliation:
Electronics and Telecommunications Research Institute P.O.Box 8 Daeduk Danji, Daejon 305–350, Korea KAIST, 373–1 Kusong-Dong, Daejon 305–701, Korea
J. Y. Lee
Affiliation:
Electronics and Telecommunications Research Institute P.O.Box 8 Daeduk Danji, Daejon 305–350, Korea KAIST, 373–1 Kusong-Dong, Daejon 305–701, Korea
Get access

Abstract

A low energy ion beam assisted deposition (IBAD) technique has been developed to fabricate refractory W-Si-N films for the application to gate electrode of GaAs metal-semiconductor field effect transistors( MESFETs ). Thermal stability of the IBAD refractory metal/n-GaAs interface was investigated by examining the microstructure and Schottky diode characteristics. The Schottky barrier heights of 0.71, 0.84, and 0.76 eV were obtained after thermal annealing at 850°C for the W/, WN0.27/, and WSi0.3N0.4/GaAs diodes, respectively, and these values are comparable to those of the best results published with conventional reactive sputtering. While some crystalization of the deposit and reaction between film and substrate at the interface were observed with TEM for the W/ and WN/GaAs contacts annealed at 800°, the WSiN film remained amorphous and showed clear interface with the GaAs substrate without significant morphological change. The WS0.3N0.4/GaAs diode showed good thermal stability of Schottky barrier heights with only 20 meV variation in the temperature range between 700 and 850°C, and that is proposed to be due to the stable microstructure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yokoyama, N., Mimura, T., Fukuta, M., and Ishikawa, H., IEEE ISSCC Tech. Dig. 218 (1981).Google Scholar
2. Josefowicz, J.Y. and Rensch, D.B., J. Vac. Sci. Technol. B5, 1707 (1987) ;Google Scholar
Lau, S.S., Chen, W.X., Marshall, E.D., Pai, C.S., Tseng, W.F., and Kuech, T.F., Appl. Phys. Lett. 47 (12), 1298 (1985)Google Scholar
3. Josefowicz, J.Y., Rensch, D.B., and Lundgren, R.E., 1986 IEEE GaAs IC Symp. Dig. Tech. Papers, 43 (1986).Google Scholar
4. Uchitomi, N., Nagaoka, M., Shimada, K., Mizogushi, T., and Toyoda, N., J. Vac. Sci. Technol. B4, 1392 (1986) ;Google Scholar
Yamagishi, H. and Yamamoto, Y., Jpn. J. Appl. Phys. 23, L895 (1984).Google Scholar
5. Lahav, A.G., Wu, C.S., and Baiocchi, F.A., J. Vac. Sci. Technol. B6, 1785 (1988) ;Google Scholar
Takatani, S., Matsuoka, N., Shigeta, J., Hashimoto, N., and Nakashima, H., J. Appl. Phys. 64. (1), 220 (1987) ;Google Scholar
Zhongdae, Z. and Cheung, N.W., J. Vac. Sci. Technol. B4, 1398 (1986);Google Scholar
Jackson, T.N. and DeGelormo, J.F.,J. Vac. Sci. Technol., B3 1676 (1985) ;Google Scholar
Ohnishi, T., Yokoyama, N., Onodera, H., Suzuki, S., and Shibatomi, A., Appl. Phys. Lett. 43 (6), 600 (1983).Google Scholar
6. Geissberger, A.E., Sadler, R.A., Balzen, M.L., and Crites, J.W., J. Vac. Sci. Technol. B5, 1701 (1987) ;Google Scholar
Kwok, S.P.,J. Vac. Sci. Technol., B4, 1383 (1986).Google Scholar
7. Onodera, H., Tokumitsu, M., Sugitani, S., Yamane, Y., and Asai, K., IEEE Electron. Dev. Lett. 9 (8), 417 (1988).Google Scholar
8. Lee, J.S., Shim, K.W., Park, C.S., Ma, D.S., and Lee, J.Y., Proc. Korean Conf. Semicon. Mat. Dev. and CAD, 7 (1), 267 (1989) ;Google Scholar
Lee, J.S., Park, C.S., Kim, D.J., and Kang, J.Y., Pending on Korea, Japan, and US Patents, 1990.Google Scholar
9. Lee, J.S., Park, C.S., Yang, J.W., Kang, J.Y., and Ma, D.S., J. Appl. Phys. 67 (2), 1134 (1990);Google Scholar
Lee, J.S., Park, C.S., Kang, J.Y., Ma, D.S., and Lee, J.Y., J. Vac. Sci. Technol. B8, 1117 (1990).Google Scholar
10. Sze, S.M., Phvsics of Semiconductor Devices., 2nd ed. ( John Wiley & Sons, New York, 1981), pp. 255258.Google Scholar