Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:37:50.481Z Has data issue: false hasContentIssue false

Schottky barrier height tuning by Hybrid organic-inorganic multilayers

Published online by Cambridge University Press:  29 April 2014

V. Torrisi
Affiliation:
Laboratory for Molecular Surface and Nanotechnology (LAMSUN), Department of Chemical Sciences, University of Catania and CSGI, Viale A. Doria 6, 95125, Catania, Italy.
M. A. Squillaci
Affiliation:
Laboratory for Molecular Surface and Nanotechnology (LAMSUN), Department of Chemical Sciences, University of Catania and CSGI, Viale A. Doria 6, 95125, Catania, Italy.
F. Ruffino
Affiliation:
Dipartimento di Fisica ed Astronomia-Università di Catania, and MATIS IMM-CNR, via S. Sofia 64 95128 Catania, Italy.
I. Crupi
Affiliation:
Dipartimento di Fisica ed Astronomia-Università di Catania, and MATIS IMM-CNR, via S. Sofia 64 95128 Catania, Italy.
M.G. Grimaldi
Affiliation:
Dipartimento di Fisica ed Astronomia-Università di Catania, and MATIS IMM-CNR, via S. Sofia 64 95128 Catania, Italy.
G. Marletta
Affiliation:
Laboratory for Molecular Surface and Nanotechnology (LAMSUN), Department of Chemical Sciences, University of Catania and CSGI, Viale A. Doria 6, 95125, Catania, Italy.
Get access

Abstract

Semiconducting and insulating polymers and copolymers/Au nanograins based hybrid multilayers (HyMLs) were fabricated on p-Si single-crystal substrate by an iterative method that involves, respectively, Langmuir-Blodgett and spin-coating techniques (for the deposition of organic film) and sputtering technique (for the deposition of metal nanograins) to prepare Au/HyMLs/p-Si Schottky device. The electrical properties of the Au/HyMLs/p-Si Schottky device were investigated by current-voltage (I–V) measurements in the thickness range of 1-5 bilayers (BL).

At different number of layers, current-voltage (I–V) measurements were performed. Results showed a rectifying behavior. Junction parameters, such as barrier height (BH), from the I–V measurements for example for the PMMA-b-PS based Au/HyMLs/p-Si structure were obtained as 0.72±0.02 eV at 1BL and 0.64±0.02eV at 5BL. It was observed that the BH value of 0.61 eV obtained for the 5 BL PS based Au/HyMLs/p-Si structure was lower than the value of 0.68 eV of conventional Au/p-Si Schottky diodes. Thus, modification of the interfacial potential barrier for Au/p-Si diodes has been achieved using a thin MLs of different polymers based HyMls semiconductor.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aydin, M. E., Yakuphanoğlu, F., Eom, J.-H., and Hwang, D.-H., Physica B 387, 239 (2007).10.1016/j.physb.2006.04.012CrossRefGoogle Scholar
Kavasoğlu, N., Tozlu, C., Pakma, O., Kavasoğlu, A. S., Özden, S., Metin, B., Birgi, O., and Öktik, Ş, Synth. Met. 159, 1880 (2009).10.1016/j.synthmet.2009.06.015CrossRefGoogle Scholar
Aydoğan, Ş., Sağlam, M., Türüt, A., and Onganer, Y., Mater. Sci. Eng. C 29, 1486 (2009).10.1016/j.msec.2008.12.006CrossRefGoogle Scholar
Güllü, Ö., Kılıçoğlu, T., and Türüt, A., J. of Phys. and Chem. of Solids 71, 351 (2010).10.1016/j.jpcs.2009.12.089CrossRefGoogle Scholar
Güllü, Ö. and Türüt, A., Microelectron. Eng. 87, 2482 (2010).10.1016/j.mee.2010.05.004CrossRefGoogle Scholar
Aydoğan, S., Ĭncekara, Ü., Deniz, A. R., and Türüt, A., Microelectron. Eng. 87, 2525 (2010).10.1016/j.mee.2010.06.004CrossRefGoogle Scholar
Sönmezoğlu, S., Şenkul, S., Taş, R., Çankaya, G., and Can, M., Thin Solid Films 518, 4375 (2010).10.1016/j.tsf.2010.01.042CrossRefGoogle Scholar
Kılıçoğlu, T., Aydın, M. E., Topal, G., Ebeoğlu, M. A., and Saygıl&imath, H.;, Synth. Met. 157, 540 (2007).10.1016/j.synthmet.2007.06.001CrossRefGoogle Scholar
Yüksel, Ö. F., Tuğluoğlu, N., Şafak, H., Ku&scedil, M.;, J. of Appl. Phys. 113, 044507 (2013).10.1063/1.4789021CrossRefGoogle Scholar
Gupta, R., Misra, S.C.K., Malhotra, B.D., Baladakere, N.N., Chandra, S., Appl. Phys. Lett. 58, 51 (1991).10.1063/1.104441CrossRefGoogle Scholar
Torrisi, V., Ruffino, F., Isgrò, G., Crupi, I., Li Destri, G., Grimaldi, M. G., Marletta, G., Appl. Phys. Lett. 103, 193117 (2013).10.1063/1.4829532CrossRefGoogle Scholar
Li Destri, G., Torrisi, V., Marletta, G., AIP Conference Proceedings 1459, 17 (2012).10.1063/1.4738384CrossRefGoogle Scholar
Torrisi, V., Ruffino, F., Licciardello, A., Grimaldi, M. G., Marletta, G., Nanoscale Res. Lett. 6, 167 (2011).10.1186/1556-276X-6-167CrossRefGoogle Scholar
Gupta, R. K., Singh, R. A., Journal of Polymer Research 11, 269 (2004).10.1007/s10965-005-2412-2CrossRefGoogle Scholar
Rhoderick, E. H. and Williams, R. H., Metal–Semiconductor Contacts, 2 nd ed. (Clarendon, Oxford, 1988).Google Scholar