No CrossRef data available.
Published online by Cambridge University Press: 25 February 2011
We studied the conformation of the membrane skeleton of human red blood cells (RBC) after detergent extraction of RBC ghosts, using video microscopy, light scattering, and synchrotronbased small angle X-ray scattering (SAXS). RBC membrane skeletons are two-dimensionally connected, triangulated networks of flexible, polyionic proteins. Immediately after extraction, the skeletons exhibited large-scale thermal undulations and deformed strongly in weak shear flow. Screening of electrostatic repulsion by immersion in high ionic strength buffer led to shrinkage, while the shell-like conformations and the flexibility of the skeletons were preserved. Under high ionic strength conditions (1 M monovalent salt), the static structure factor, S(q), showed two power law regimes S(q) ∝ q −α, with α <≈ 2.0 in the range of wave vectors 4×10−4 Å−1 < g < 8×10−4 Å−1, and α = 2.3 ± 0.1 in the range of wave vectors 8×10−4 Å−1 < q < l×10−1 Å−1. The same power law behavior was observed in low ionic strength buffer (25 mM salt) for q < 2×10−3 Å−1. This result is not consistent with the occurence of a crumpling transition during skeleton shrinkage. The observed form of the static structure factor, with a transition between two regimes with different power law exponents, presents evidence for the theoretically predicted flat phase of 2D-polymers.