Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:10:26.580Z Has data issue: false hasContentIssue false

Scattering Studies of the Isolated Red Blood Cell Skeleton, a Biological Two-Dimensional Polymer

Published online by Cambridge University Press:  25 February 2011

K. Svoboda
Affiliation:
Department of Physics, Harvard University, Cambridge, MA 02138 Department of Cellular and Developmental Biology, Harvard University, Cambridge, MA 02138 Rowland Institute for Science, 100 Cambridge Pkwy., Cambridge, MA 02142
C.F. Schmidt
Affiliation:
Department of Physics, Harvard University, Cambridge, MA 02138 Rowland Institute for Science, 100 Cambridge Pkwy., Cambridge, MA 02142
N. Lei
Affiliation:
Exxon Research and Engineering Company, Annandale, NJ 08801
C.R. Safinya
Affiliation:
Exxon Research and Engineering Company, Annandale, NJ 08801
S.M. Block
Affiliation:
Department of Cellular and Developmental Biology, Harvard University, Cambridge, MA 02138 Rowland Institute for Science, 100 Cambridge Pkwy., Cambridge, MA 02142
D. Branton
Affiliation:
Department of Cellular and Developmental Biology, Harvard University, Cambridge, MA 02138
Get access

Abstract

We studied the conformation of the membrane skeleton of human red blood cells (RBC) after detergent extraction of RBC ghosts, using video microscopy, light scattering, and synchrotronbased small angle X-ray scattering (SAXS). RBC membrane skeletons are two-dimensionally connected, triangulated networks of flexible, polyionic proteins. Immediately after extraction, the skeletons exhibited large-scale thermal undulations and deformed strongly in weak shear flow. Screening of electrostatic repulsion by immersion in high ionic strength buffer led to shrinkage, while the shell-like conformations and the flexibility of the skeletons were preserved. Under high ionic strength conditions (1 M monovalent salt), the static structure factor, S(q), showed two power law regimes S(q) ∝ q −α, with α <≈ 2.0 in the range of wave vectors 4×10−4 Å−1 < g < 8×10−4 Å−1, and α = 2.3 ± 0.1 in the range of wave vectors 8×10−4 Å−1 < q < l×10−1 Å−1. The same power law behavior was observed in low ionic strength buffer (25 mM salt) for q < 2×10−3 Å−1. This result is not consistent with the occurence of a crumpling transition during skeleton shrinkage. The observed form of the static structure factor, with a transition between two regimes with different power law exponents, presents evidence for the theoretically predicted flat phase of 2D-polymers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Helfrich, W., Z. Naturforsch. 33a, 305 (1978).Google Scholar
[2] Parsegian, A., Fuller, N., and Rand, R. P., Proc. Natl. Acad. Sci. 76, 2750 (1979); J. N. Israelachvili, Intermolecular and Surface Forces (Academic Press, Orlando, 1985); J. Mahanty and B. W. Ninham, Dispersion Forces (London, 1976).Google Scholar
[3] Safinya, C. R., Roux, D., Smith, G. S., Sinha, S. K., Dimon, P., Clark, N. A., and Bellocq, A. M., Phys. Rev. Lett. 57, 2718 (1986); C. R. Safinya, E. B. Sirota, D. Roux, and G. S. Smith, Phys. Rev. Lett. 62, 1134 (1989); D. Roux, C. R. Safinya, and F. Nallet, in Modern Amphiphilic Physics, edited by Ben-Shaul, W. Gelbart, and D. Roux (Springer), in press.Google Scholar
[4] Safinya, C. R., in Phase Transitions in Soft Condensed Matter, edited by Riste, T. and Sherrington, D., Nato ASI series, B, 211, 249 (1989).Google Scholar
[5] Basserau, P., Marignan, J., and Porte, G., J. Phys. (Paris) 48, 673 (1987).CrossRefGoogle Scholar
[6] Nelson, D. R. and Peliti, L., J. Phys. (Paris) 48, 1085 (1987); J. A. Aronovitz and T. C. Lubensky, Phys. Rev. Let. 60, 2634 (1988); for a broader discussion see: Statistical Mechanics of Membranes and Surfaces, edited by D. R. Nelson, T. Piran, and S. Weinberg (World Scientific, Singapore, 1989).CrossRefGoogle Scholar
[7] Plischke, M. and Boal, D., Phys. Rev. A 38, 4943 (1988); F. F. Abraham, W. E. Rudge, and M. Plischke, Phys. Rev. Let. 62, 1757 (1989); R. Lipowsky and M. Girardet, Phys. Rev. Let. 65, 2893 (1990); F. F. Abraham, Phys. Rev. Let. 67, 1669 (1991); R. Lipowsky and M. Girardet, Phys. Rev. Let. 67, 1670 (1991).Google Scholar
[8] Abraham, F. F. and Nelson, D. R., Science 249, 393 (1990); J. Physique 51, 2653 (1990).CrossRefGoogle Scholar
[9] Kantor, Y., Kardar, M., and Nelson, D. R., Phys. Rev. Let. 57, 791 (1986).Google Scholar
[10] Hwa, T., Kokufuta, E., and Tanaka, T., Phys. Rev. A 44, 2235 (1991).Google Scholar
[11] Seung, H. S. and Nelson, D. R., Phys. Rev. A 38, 1005 (1988).Google Scholar
[12] Smith, G. S., Safinya, C. R., Roux, D., and Clark, N. A., Mol. Cryst. Liq. Cryst. 144, 235 (1987); G. S. Smith, E. B. Sirota, C. R. Safinya, and N. A. Clark, Phys. Rev. Lett. 60, 813 (1988); E. B. Sirota, G. S. Smith, C. R. Safinya, R. J. Plano, and N. A. Clark, Science 242, 1406 (1988); G. S. Smith, E. B. Sirota, C. R. Safinya, R. J. Plano, and N. A. Clark, J. Chem. Phys. 92, 4519 (1990).Google Scholar
[13] Bennett, V., Physiol. Rev. 70, 1029 (1990); A. Elgsaeter, A. Stokke, A. Mikkelsen, and D. Branton, Science 234, 1217 (1986).Google Scholar
[14] Stokke, B. J., Mikkelsen, A., and Elgsaeter, A., Biochim. Biophys. Acta 816, 102 (1985).Google Scholar
[15] Sandvold, M. L., Mikkelsen, A., and Elgsaeter, A., Acta Chem. Scand. 43, 783 (1989).Google Scholar
[16] Elgsaeter, A., Biochim. Biophys. Acta 536, 235 (1978).Google Scholar
[17] Block, S. M., Fahrner, K. A., and Berg, H. C., J. Bacteriology 173, 933 (1991).Google Scholar
[18] Svoboda, K., Schmidt, C. F., Branton, D., and Block, S. M., to be published (1992).Google Scholar
[19] Block, S. M., in Noninvasive Techniques in Cell Biology, edited by Foskett, J. K. and Grinstein, S. (Wiley/Liss, New York, 1990), p. 375.Google Scholar
[20] Berg, H. C. and Block, S. M., J. Gen. Microbiol. 130, 2915 (1984).Google Scholar
[21] Dodge, J. T., Mitchell, C., and Hanahan, D. J., Arch. Biochem. Biophys. 100, (1963); M. P. Sheetz and D. Sawyer, J. Supramol. Struct. 8, 399 (1978); B. W. Shen, R. Josephs, and T. L. Steck, J. Cell Biol. 102, 997 (1984).Google Scholar
[22] Ungewickell, E. and Gratzer, W., Eur. J. Biochem. 88, 379 (1978).CrossRefGoogle Scholar