Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T07:56:09.720Z Has data issue: false hasContentIssue false

Scanning Tunneling Microscopy Studies of InGaN Growth by Molecular Beam Epitaxy

Published online by Cambridge University Press:  15 February 2011

Huajie Chen
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213
A. R. Smith
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213
R. M. Feenstra
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213
D. W. Greve
Affiliation:
Department of Electrical and Computer Engineering, Carnegie Mellon University
J. E. Northrup
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
Get access

Abstract

InGaN alloys with indium compositions ranging from 0–40% have been grown by molecular beam epitaxy. The dependence of the indium incorporation on growth temperature and group III/group V ratio has been studied. Scanning tunneling microscopy images, interpreted using first-principles theoretical computations, show that there is strong indium surface segregation on InGaN. Based on this surface segregation, a qualitative model is proposed to explain the observed indium incorporation dependence on the growth parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Nakamura, S., Senoh, M., Nagahama, S.-I., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., and Chocho, K., Jpn. J. Appl. Phys., Part 2 36, L1568 (1997); S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, Berlin, 1997).Google Scholar
[2] Moison, J.M., Guille, C., Houzay, F., Barthe, F., and Rompay, M. Van, Phys. Rev. B 40, 6149 (1989).Google Scholar
[31 Smith, A.R., Feenstra, R.M., Greve, D.W., Shin, M.-S., Skowronski, M., Neugebauer, J., Northrup, J.E., Appl. Phys. Lett. 72, 2114 (1998).Google Scholar
[4] See for example, Nakamura, S., Microelectron. J. 25, 651 (1994); J.M. Van Hove, P.P. Chow, A.M. Wowchak, J.J. Klaassen, R. Hickman II, and C. Polley, J. Vac. Sci. Technol. B 16, 1286 (1998); N. Grandjean, and J. Massies, Appl. Phys. Lett. 72, 1078 (1998).Google Scholar
[5] Smith, A.R., Ramachandran, V., Feenstra, R.M., Greve, D.W., Ptak, A., Myers, T., Sarney, W., Salamanca-Riba, L., Shin, M., and Skowronski, M., MRS Internet J. Nitride Semicond. Res. 3, 12 (1998).Google Scholar
[6] Piner, E.L., Mcintosh, F.G., Roberts, J.C., Boutros, K.S., Aumer, M.E., Joshkin, V.A., El-Masry, N.A., Bedair, S.M., and Liu, S.X., Mat. Res. Soc. Symp. Proc. 449, 85 (1997).Google Scholar
[7] Smith, A.R., Feenstra, R.M., Greve, D.W., Neugebauer, J., and Northrup, J.E., Phys. Rev. Lett. 79, 3934 (1997).Google Scholar
[8] Northrup, J.E., Neugebauer, J., and Romano, L.T., submitted to Appl. Phys. Lett.Google Scholar
[9] Harrison, W.A., Electronic structure and the properties of solids (Freeman, San Francisco, 1980) p 176.Google Scholar
[10] Smith, A.R., Feenstra, R.M., Greve, D.W., Neugebauer, J., and Northrup, J.E., Appl. Phys. A 66, S947 (1998).Google Scholar
[11] Zywietz, T., Neugebauer, J., and Scheffler, M., Appl. Phys. Lett. 73, 487 (1998).Google Scholar
[12] Tarsa, E.J., Heying, B., Wu, X.H., Fini, P., DenBaars, S.P., and Speck, J.S., J. Appl. Phys. 82, 5472 (1997).Google Scholar
[13] Smith, A.R., Ramachandran, V., Feenstra, R.M., Greve, D.W., Shin, M.-S., Skowronski, M., Neugebauer, J., Northrup, J.E., J. Vac. Sci. Technol. A 16, 1641 (1998).Google Scholar
[14] Zywietz, T.K., Neugebauer, J., Scheffler, M., and Northrup, J.E. (unpublished).Google Scholar