Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T23:39:17.219Z Has data issue: false hasContentIssue false

Scanning Tunneling Microscopy on Charge Density Waves in Layered Compounds

Published online by Cambridge University Press:  15 February 2011

J. Th. M. De Hosson
Affiliation:
Department of Applied Physics, University of Groningen, Zernike Complex, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
G. P. E. M. Van Bakel
Affiliation:
Department of Applied Physics, University of Groningen, Zernike Complex, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
Get access

Abstract

Different layered transition metal dichalcogenides were subjected to scanning tunneling microscopy to reveal the electronic charge distribution associated with the charge density wave (CDW) part of the superstructure, in addition to the atomic corrugation. The observations presented display three regimes ranging from localized CDW centred around defects/impurities in the case of lT-TiS2, via an intermediate regime governed by overlapping envelope functions in 2H-NbSe2, to a fully developed CDW system in 1T-TaSe2 (as well in a large number of other compounds). The fact that these observations have been made in solids ranging from (dirty) semiconductor (1T-TiS2) to semimetal (1T-TaSe2) to metallic (2H-NbSe2) points at the general applicability of the phenomenological Ginzburg-Landau theory, employed to describe the various regimes in which the formation of charge density waves and the accompanying periodic lattice distortions appear to act.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Friend, R. H., Yoffe, A. D., Adv. Phys. 36, 1(1987).Google Scholar
[2] Wilson, J. A., Phys. Status Solidi B 86, 11 (1978).Google Scholar
[3] Burk, B., Thomson, R. E., Zettl, A., Clarke, J., Phys. Rev. Lett. 66, 3040 (1991).Google Scholar
[4] Slough, C. G., McNairy, W. W., Wang, C., Coleman, R. V., J. Vac. Sci. Technol. B 9,1036 (1991).Google Scholar
[5] Wu, X. L., Lieber, C. M., Phys. Rev. Lett. 64, 1150 (1990).Google Scholar
[6] Wu, X. L., Lieber, C. M., J. Vac. Sci. Technol. B 9, 1044 (1991).CrossRefGoogle Scholar
[7] McMillan, W. L., Phys. Rev. B 14, 1496 (1976).Google Scholar
[8] McMillan, W. L., Phys. Rev. B 12, 1187 (1975).Google Scholar
[9] Coleman, R. V., Giambattista, B., Hansma, P. K., Johnson, A., McNairy, W. W., Slough, C. G., Adv. Phys. 37,559 (1988).Google Scholar
[10] Slough, C. G., Giambattista, B., Johnson, A., McNairy, W. M., Wang, C., Coleman, R. V., Phys. Rev. B 37, 6571 (1988).Google Scholar
[11] Thomson, R. E., Walter, U., Ganz, E., Clarke, J., Zettl, A., Rauch, P., DiSalvo, F. J., Phys. Rev. B 38, 10734 (1988).Google Scholar
[12] Parkinson, B.A., Ren, J. and Whangbo, M.-H., Am. Chem. Soc. 113, 7833 (1991)CrossRefGoogle Scholar
[13] Barrett, R. C., Nogami, J., Quate, C. F., Appl. Phys. Lett. 57, 10, 992 (1990).Google Scholar
[14] Dai, H., Chen, H., Lieber, C. M., Phys. Rev. Lett. 66,24,3183 (1991).Google Scholar
[15] Chen, H., Wu, X. L., Lieber, C. M., J. Am. Chem. Soc. 112, 3326 (1990).Google Scholar
[16] Wu, X. L., Lieber, C. M., Phys. Rev. B 41, 2, (1990).Google Scholar
[17] Wu, X. L., Lieber, C. M., Phys. Rev. Lett. 61, 22 (1988).Google Scholar
[18] Ginzburg, V. L., Landau, L. D., Nuovo Cimento 2, 1234 (1955).Google Scholar
[19] Dahn, D. C., Watanabe, M. O., Blackford, B. L., Jericho, M. H., J. Appl. Phys. 63, 2, 315 (1987).Google Scholar
[20] Van Bakel, G.P.E.M., De Hosson, J. Th. M., Phys. Rev. B 46,2001 (1992 Google Scholar