Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T15:38:35.917Z Has data issue: false hasContentIssue false

Scanning Tunneling Microscopy and Spectroscopy of Semiconductor Surfaces

Published online by Cambridge University Press:  26 February 2011

J. E. Demuth
Affiliation:
IBM Watson Research Center, Yorktown Heights, NY 10598
R. J. Hamers
Affiliation:
IBM Watson Research Center, Yorktown Heights, NY 10598
R. M. Tromp
Affiliation:
IBM Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

The principles of scanning tunneling microscopy and its application to study silicon surfaces are briefly reviewed. Scanning tunneling microscopy “topographs” contain both geometric information about the locations of atoms at the surface as well as about the charge densities of surface localized states. We describe procedures by which these two components can be distinguished so as to produce images of the surface electronic states with atomic resolution. This ability to spatially resolve the surface electronic structure provides new information to understand the local structure and nature of bonding, and in some cases can be used as a means to chemically image specific features of the surface.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Binnig, G. and Rohrer, H., Helv. Phys. Acta, 55, 726 (1982).Google Scholar
2. Binnig, G., Rohrer, H., Ch., Gerber, and Weibel, E., Phys. Rev. Lett. 50, 120 (1983).Google Scholar
3. Demuth, J. E., Hamers, R. J., Tromp, R. M., and Weiland, M. E., IBM Jour. of Res. and Dev. 30, 396 (1986).Google Scholar
4. Hamers, R. J., Tromp, R. M., and Demuth, J. E., Phys. Rev. B 34, 1388 (1986).Google Scholar
5. Moreland, J., Alexander, S., Cox, M., Sonnenfeld, R., and Hansma, P. K., Appl. Phys. Lett. 43, 387 (1983).Google Scholar
6. Becker, R. S. and Golorchenko, J. A., to be published.Google Scholar
7. Tromp, R. M., Hamers, R. J., and Demuth, J. E., Phys. Rev. B 34, 1388 (1986).CrossRefGoogle Scholar
8. Baratoff, A., Physica B31, 143 (1984).Google Scholar
9. Tersoff, J., and Hamann, D. R., Phys. Rev. B 31, 805 (1985).Google Scholar
10. Lang, N. D., Phys. Rev. Lett. 56, 1164 (1986).Google Scholar
11. Feenstra, .R. M., Thompson, W. A., and Fein, A. P., Phys. Rev. Lett. 56, 608 (1986).Google Scholar
12. Becker, R. S., Golovchenko, J. A., and Swartzentraber, B. S., Phys. Rev. Lett. 55, 987 (1985).Google Scholar
13. Binnig, G., Frank, K. H., Fuchs, H., Kubier, J., Garcia, N., Riehl, B., Rohrer, H., Salvan, F., and Williams, A. R., Phys. Rev. Lett. 55, 991 (1985).Google Scholar
14. Kaiser, W. J., and Jaklevic., R. C, IBM Jour. of Res. and Dev. 30, 411 (1986).Google Scholar
15. Feenstra, R. M., Stroscio, J., and Fein, A. P., to be published.Google Scholar
16. Binnig, G. and Rohrer, H., IBM Jour. of Res. and Dev. 30, 355 (1986).Google Scholar
17. Hamers, R. J., Tromp, R. M., and Demuth, J. E., Phys. Rev. Lett. 56, 1972 (1986).Google Scholar
18. Tromp, R. M., Hamers, R. J. and Demuth, J. E., Science 234, 304 (1986).CrossRefGoogle Scholar
19. Himpsel, F. J., Straub, D., and Th., Fauster, Proc. 17th Int'ì Conf. Phys. Semiconductors, Ed. Chadi, J. and Harrison, W. A., Springer Verlag, NY, p. 39 (1985).CrossRefGoogle Scholar
20. Northrup, J. E.. Phys. Rev. Lett. 57, 154 (1986).Google Scholar
21. Ihm, J., Cohen, M. L., and Chadi, D. J., Phys. Rev. B 21, 4592 (1980).Google Scholar
22. Weiland, M. E. and Koch, R. H., Appl. Phys. Letts. 50, 120 (1986);Google Scholar
Koch, R. and Hamers, R. J., to be published.Google Scholar
23. Demuth, J. E., Hamers, R. J. and Tromp, R. M., Proc. of the 14th Int'ì Conf. on Defects in Semiconductors, Paris, France, August 1986.Google Scholar