Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T17:39:20.668Z Has data issue: false hasContentIssue false

Scanning Tunneling Microscopy and Atomic Force Microscopy of Au Implanted in Highly Oriented Pyrolytic Graphite

Published online by Cambridge University Press:  21 February 2011

Y S. Tung
Affiliation:
Department of Physics, Fisk University, Nashville, TN 37208
A. Ueda
Affiliation:
Department of Physics, Fisk University, Nashville, TN 37208
D.O. Henderson
Affiliation:
Department of Physics, Fisk University, Nashville, TN 37208
R. Mu
Affiliation:
Department of Physics, Fisk University, Nashville, TN 37208
Z. Gu
Affiliation:
Department of Physics, Fisk University, Nashville, TN 37208
C.W. White
Affiliation:
Oak Ridge National Laboratory, Solid State Division, Oak Ridge, TN 37831-6057
R. A. Zuhr
Affiliation:
Oak Ridge National Laboratory, Solid State Division, Oak Ridge, TN 37831-6057
Jane G. Zhu
Affiliation:
Oak Ridge National Laboratory, Solid State Division, Oak Ridge, TN 37831-6057
Get access

Abstract

Surfaces of highly oriented pyrolytic graphite implanted with gold were studied by both constant current STM. constant force, and tapping mode AFM. Gold colloids were observed by both constant current STM and tapping mode AFM. The surfaces can be modified by applying currents of +4 V and 1 nA. In addition, pyramidal and faceted structures were observed on sample surfaces suggesting the presence of diamond microcrystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 de Villeneuve, C. H., Phaner, M., Porte, L., Monocoffre, N., Pertosa, P. and Tousset, J., Vacuum 41, p. 1686 (1990).Google Scholar
2 Yan, J., Li, Z., Bai, C., Yang, W. S., Wang, Y., Zhao, W., Kang, Y., Yu, F. C., Zhai, P. and Tang, X., J. Appl. Phys. 75, p. 1390 (1994).Google Scholar
3 Henderson, D. O., Mu, R., Ueda, A., Tung, Y. S., White, C. W., Zhur, R. A. and Zhu, Jane G., J. Vac. Sci. Technol. B, in print.Google Scholar
4 Henderson, D. O., Mu, R., Tung, Y. S., George, M. A., Burger, A., Morgan, S. H., White, C. W., Zhur, R. A. and Magruder, R. H., J. Vac. Sci. Technol. B 13, p. 1198 (1995).Google Scholar
5 Albrecht, T. R., Dovek, M. M., Kirk, M. D., Lang, C. A., Quate, C. F. and Smith, D. P. E., Appl. Phys. Lett. 55, p1727 (1989).Google Scholar
6 Mamin, H. J., Guethner, P. H. and Rugar, D., Phys. Rev. Lett. 65, p.2418 (1990).Google Scholar
7 Pascual, J. I., Mendez, J., Gomez-Herrero, J., Baro, A. M., Garcia, N. and Binh, V T., Phys. Rev. Lett. 71, p. 1852 (1993).Google Scholar
8 Ohto, M., Yamaguchi, S. and Tanaka, K., Jpn. J. Appl. Phys. 34, p. 1694 (1995).Google Scholar