Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-04T21:38:13.460Z Has data issue: false hasContentIssue false

A Scanning Force Microscopy Study of Block Copolymers Containing a Conjugated Segment

Published online by Cambridge University Press:  10 February 2011

Ph. Leclère
Affiliation:
Service de Chimie des Matériaux NouveauxCentre de Recherche en Electronique et Photonique MoléculairesUniversité de Mons-HainautPlace du Parc 20, B-7000 Mons (Belgium)
R. Lazzaroni
Affiliation:
Service de Chimie des Matériaux NouveauxCentre de Recherche en Electronique et Photonique MoléculairesUniversité de Mons-HainautPlace du Parc 20, B-7000 Mons (Belgium)
V. Parente
Affiliation:
Service de Chimie des Matériaux NouveauxCentre de Recherche en Electronique et Photonique MoléculairesUniversité de Mons-HainautPlace du Parc 20, B-7000 Mons (Belgium)
B. François
Affiliation:
Laboratoire de Recherche sur les Matériaux Polymères, CNRS/UPPAAvenue du Président Angot 2, F-64000 Pau (France)
J. L. Brédas
Affiliation:
Service de Chimie des Matériaux NouveauxCentre de Recherche en Electronique et Photonique MoléculairesUniversité de Mons-HainautPlace du Parc 20, B-7000 Mons (Belgium)
Get access

Abstract

Atomic Force Microscopy (AFM) and related techniques are used to investigate the morphology of diblock copolymers. We focus on compounds containing a conjugated segment, polyparaphenylene, associated to a polymethylmethacrylate or a polystyrene block. The influence of the presence of the conjugated segment on the microdomain morphology is analyzed as a function of chain composition. Separate microdomains are observed on the surface of thin films by means of phase-detection imaging tapping-mode AFM. Their shape and size are interpreted in terms of molecular aggregation, with the help of molecular dynamics calculations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Collin, B., Chatenay, D., Coulon, G., Aussere, D., Gallot, Y., Macromolecules 25, 1621 (1992).Google Scholar
2. Van Dijck, M.A., Van den Berg, R., Macromolecules 28, 6773 (1995).Google Scholar
3. Leclère, Ph., Lazzaroni, R., Brédas, J.L., Yu, J.M., Dubois, Ph., Jérôme, R., Langmuir 12, 4317 (1996).Google Scholar
4. Zhong, Q., Inniss, D., Kjoller, K., Elings, V.B., Surf. Sci. 290, L688 (1993).10.1016/0039-6028(93)90582-5Google Scholar
5. Magonov, S.N., Elings, V.B., Whangbo, M.H., Surf. Sci., 375, L385 (1997).Google Scholar
6. Bar, G., Thomann, Y., Brandsch, R., Cantow, H.J., Whangbo, M.H., Langmuir 13, 3807 (1997).10.1021/la970091mGoogle Scholar
7. François, B., Zhong, X.F., Synth. Met. 41–43, 955 (1991). G. Widawski, M. Rawiso, B. François, J. Chim. Phys. 89, 1331 (1992). B. François, G. Widawski, M. Rawiso, B. César, Synth. Met. 69, 463 (1995).Google Scholar
8. Saunders, R.S., Cohen, R.E., Schrock, R.R., Macromolecules 24, 5599 (1991).Google Scholar
9. Radzilowski, S.I. Stupp, , Macromolecules 27, 7747 (1994). L.H. Radzilowski, B.O. Carragher, S.I. Stupp, Macromolecules 30, 2110 (1997).Google Scholar
10. Bates, F.S., Schulz, M.F., Rosendale, J.H., Macromolecules 25, 5547 (1992).10.1021/ma00046a070Google Scholar
11. Halperin, A., Macromolecules 23, 2724 (1990).Google Scholar
12. Schweizer, K.S., Macromolecules 26, 6050 (1993).Google Scholar
13. Williams, D.R.M., Fredriksson, G.H., Macromolecules 25, 3561 (1992).10.1021/ma00039a040Google Scholar