Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T01:35:02.947Z Has data issue: false hasContentIssue false

Scaling Properties of two-dimensional Star-branched Polymers grown by Diffusion

Published online by Cambridge University Press:  01 February 2011

Guillermo Ramirez-Santiago
Affiliation:
[email protected], Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Fisica Quimica, Cto. de la Investigacion Cientifica S/N, Ciudad Universitaria, Coyoacan D.F., Mexico D. F. 04010 MEX, Mexico, 04010, Mexico, 52+55 5622 5081, 52+55 5622 5015
Carlos I. Mendoza
Affiliation:
[email protected], Instituto de Investigacion en Materiales, Universidad Nacional Autonoma de Mexico, Depto. de Polimeros, PO Box 70-360, Mexico D.F., Mexico, 04510, Mexico
Get access

Abstract

We present an off-lattice numerical algorithm based upon pure diffusion to construct two-dimensional star-branched polymers with one, three, six and twelve branches. We built up structures with a total of up to 30,000 monomer units. For each one of them averages over one hundred independent configurations were taken. From a finite size analysis the scaling properties of the pair correlation function as well as the radius of gyration were obtained. Our findings indicate that the fractal dimension of the structures are: df=1.21 (0.03) for a linear polymer, df==1.21(0.02), for three branches, df==1.23 (0.02) for six branches and df=1.26 (0.03) for twelve branches.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhao, Y.-P., Hopper, A.R., Wang, G.-C., and Lu, T.-M., Phys. Rev. E 60, 4310 (1999).Google Scholar
2. Majid, I., Jan, N., Coniglio, A., and Stanley, H. E., Phys. Rev. Lett. 52, 1257 (1984).Google Scholar
3. Kremer, K. and Lyklema, J.W., Phys. Rev. Lett. 54, 267 (1985).Google Scholar
4. Sander, L.M., Cont. Phys 41, 203 (2000).Google Scholar
5. Gonzalez, A. E., and Ramirez-Santiago, G., Phys. Rev. Lett. 74, 1238 (1995); ibid, J. Colloid. Interface. Sci. 182, 254 (1996).Google Scholar
6. Timoshenko, E. G., Kuznetsov, Y. A. and Connolly, R., J. Chem. Phys. 116, 3905 (2002).Google Scholar
7. Marques, C.M., Izzo, D., Charitat, T., and Mendes, E., Eur. Phys. J. B 3, 353 (1998).Google Scholar