Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T17:32:07.406Z Has data issue: false hasContentIssue false

Scaling for the Coalescence of Microfractures before Breakdown

Published online by Cambridge University Press:  10 February 2011

S. Zapperi
Affiliation:
Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215, USA
P. Ray
Affiliation:
The Institute of Mathematical Sciences, CIT Campus, Madras - 600 113, India
H. E. Stanley
Affiliation:
Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215, USA
A. Vespignani
Affiliation:
Instituut-Lorentz, University of Leiden, P.O. Box 9506, The Netherlands.
Get access

Abstract

We study the behavior of fracture in disordered systems close to the breakdown point. We simulate numerically both scalar (resistor network) and vectorial (spring network) models with threshold disorder, driven at constant current and stress rate respectively. We analyze the scaling of the susceptibility and the cluster size close to the breakdown. We observe avalanche behavior and clustering of the cracks. We find that the scaling exponents are consistent with those found close to a mean-field spinodal and present analogies between the coalescence of microfractures and the coalescence of droplets in a metastable magnetic system. Finally, we discuss different experimental conditions and some possible theoretical interpretations of the results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Griffith, A. A., Phil. Trans. Roy. Soc. London A 221, 163 (1920).Google Scholar
[2] Gunton, J. D., San Miguel, M. and Sahini, P. S., in Phase Transitions and Critical Phenomena. Vol. 8, edited by Domb, C. and Lebowitz, J. L. (Academic, London, 1983).Google Scholar
[3] Unger, C. and Klein, W., Phys. Rev. B 29, 2698 (1984);Google Scholar
Unger, C. and Klein, W., Phys. Rev. B 31, 6127 (1985); for a review, seeGoogle Scholar
Monette, L., Int. J. of Mod. Phys B 8, 1417 (1994).Google Scholar
[4] Rundle, J. B. and Klein, W., Phys. Rev. Lett. 63, 171 (1989)Google Scholar
[5] Selinger, R. L. B., Wang, Z.-G., Gelbart, W. M. and Ben-Saul, A., Phys. Rev. A 43, 4396 (1991).Google Scholar
[6] Strauven, H., Claes, G., Heylen, G., Crevecoer, G. and Maes, C., in 22nd European Conference on Acoustic Emission Testing Proceedings (Aberdeen, 1996)Google Scholar
[7] Anifrani, J.-C., Le Floc'h, C., Sornette, D. and Souillard, B., J. de Phys. I 5, 631 (1995).Google Scholar
[8] Petri, A., Paparo, G., Vespignani, A., Alippi, A. and Costantini, M., Phys. Rev. Lett. 73, 3423 (1994).Google Scholar
[9] Cannelli, G., Cantelli, R. and Cordero, F., Phys. Rev. Lett. 70, 3923 (1993).Google Scholar
[10] Diodati, P., Marchesoni, F. and Piazza, S., Phys. Rev. Lett. 67, 2239 (1991).Google Scholar
[11] de Arcangelis, L., Redner, S. and Herrmann, H. J., J. Phys. Lett. (Paris) 46, L585 (1985);Google Scholar
Duxbury, P., Beale, P. D. and Leath, P. L., Phys. Rev. Lett. 57, 1052 (1986).Google Scholar
[12] Ray, P. and Date, G., Physica A 229, 26 (1996).Google Scholar
[13] Zapperi, S., Ray, P., Stanley, H. E. and Vespignani, A., unpublished.Google Scholar
[14] Zapperi, S., Vespignani, A. and Stanley, H. E. in Fracture-Instability Dynamics, Scaling and Ductile/Brittle Behavior, edited by Selinger, R. B., Mecholsky, J., Fuller, E. R. Jr and Carlsson, A. (Mat. Res. Soc. Proc. 409, Pittsburgh, 1996) pp. 355358.Google Scholar
[15] Tillemans, H. J. and Herrmann, H. J., Physica A 217, 261 (1995).Google Scholar