Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T17:24:58.006Z Has data issue: false hasContentIssue false

Sb-terminated InAs(001)-(2×4) and (2×8) studied using scanning tunneling microscopy and ab initio density functional theory

Published online by Cambridge University Press:  21 March 2011

William Barvosa-Carter
Affiliation:
HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu CA 90265
Frank Grosse
Affiliation:
HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu CA 90265 UCLA Department of Mathematics, Los Angeles, CA
James H. G. Owen
Affiliation:
HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu CA 90265 UCLA Department of Mathematics, Los Angeles, CA
Jennifer J. Zinck
Affiliation:
HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu CA 90265
Get access

Abstract

We have studied the structure of MBE-grown InAs(001)-(2×4) surfaces exposed to low Sb2 fluxes by scanning tunneling microscopy (STM) and ab initio density functional theory (DFT). Experimentally, we observe an Sb-terminated α2(2×4) phase over a wide range of temperatures (400–510 °C) for low Sb2 flux (<0.1 ML/s), whereas temperature and As2 flux must be carefully controlled to achieve the same As-terminated surface structure. At lower temperatures, we observe indications of an Sb-terminated (2×8) symmetry surface phase, and we report briefly on its proposed structure and stability, as well as its possible role in subsequent formation of the Sb-terminated (1×3) phase found at typical Sb2 fluxes used during heterostructure growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Nosho, B.Z., Weinberg, W.H., Barvosa-Carter, W., Bennett, B.R., Shanabrook, B.V., and Whitman, L.J., Appl. Phys. Lett. 74 1704 (1999).Google Scholar
[2] Bracker, A.S., Nosho, B.Z., Barvosa-Carter, W., Whitman, L.J., Bennett, B.R., Shanabrook, B.V., Culbertson, J.C., Appl. Phys. Lett. 78 2440 (2001).Google Scholar
[3] Neave, J.H., Joyce, B.A., Dobson, P.J., Appl. Phys. A 34 179 (1984).Google Scholar
[4] Lewis, B.F., Fernandez, R., Madukhar, A., Grunthaner, F.J., JVST B. 4 560 (1986).Google Scholar
[5] Owen, J.H.G., Barvosa-Carter, W., Zinck, J.J., Appl. Phys. Lett. 76 3070 (2000).Google Scholar
[6] Barvosa-Carter, W., Grosse, F., Owen, J.H.G., and Zinck, J.J., unpublished.Google Scholar
[7] Barvosa-Carter, W., Ross, R.S., Ratsch, C., Grosse, F., Owen, J.H.G., Zinck, J.J., forthcoming in Surf. Sci. Lett. (2001).Google Scholar
[8] Whitman, L., Bennett, B.R., Kneedler, E.M., Jonker, B.T., Shanabrook, B.V., Surf. Sci. Lett. 436 L707 (1999).Google Scholar
[9] Bockstedte, M., Kley, A., Neugebauer, J., and Scheffler, M., Comp. Phys. Comm. 107 187 (1997).Google Scholar
[10] Fuchs, M. and Scheffler, M., Comp. Phys. Comm. 119 805 (1999).Google Scholar
[11] Monkhorst, H.J. and Pack, J. D. Phys. Rev. B 13 5188 (1976).Google Scholar
[12] Barvosa-Carter, W., Bracker, A.S., Culbertson, J.C., Nosho, B.Z., Shanabrook, B.V., Whitman, L.J., Phys. Rev. Lett. 84 4649 (2000).Google Scholar