Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T01:54:02.208Z Has data issue: false hasContentIssue false

Rupture of Random Fuse Networks: Ductile to Brittle Crossover

Published online by Cambridge University Press:  03 September 2012

Rafael F. Angulo
Affiliation:
Intevep S.A., Apartado 76343, Caracas 1070A, Venezuela
Ernesto Medina
Affiliation:
Intevep S.A., Apartado 76343, Caracas 1070A, Venezuela
Get access

Abstract

We study the rupture process of Random Fuse Networks (RFN's) with quenched disorder in the microscopic threshold voltages. If lattices are driven to breakdown in one blow by an externally applied voltage the RFN's are shown to be equivalent to the toughest percolation backbone. Critical path analysis holds exactly in this case for all disorder distributions. For gradual rupture, it is shown that the existence of a lower cutoff in the disorder distributions entails a crossover from ductile to brittle behavior. The crossover length is a function of microscopic disorder and diverges in the limit of infinite disorder.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Fracture, edited by Liebowitz, H. (Academic, New York,1884), Vols. I–VIII; Statistical Models for the Fracture of Disordered Media, edited by Herrmann, H. J. and Roux, S. (Elvesier, Amsterdam, 1990).Google Scholar
[2] Roux, S., Hansen, A., Herrmann, H. J. and Guyon, E, J. Stat. Phys. 52, 237 (1988).Google Scholar
[3] Takayasu, H., Phys. Rev Lett. 54, 1099 (1985); M. Sahimi and J. D. Goddard, Phys. Rev. B 33, 7848 (1986);Google Scholar
[4] Kahng, B., Batrouni, G. G., Redner, S., Arcangelis, L. de and Herrmann, H. J., Phys. Rev. B 37, 7625 (1988).Google Scholar
[5] Arcangelis, L. de, Redner, S. and Herrmann, H. J., J. Phys. (Paris) 46, 585 (1885); P. M. Duxbury, P. D. Beale and P. L. Leath, Phys. Rev. Lett. 57, 1052 (1986); P. M. Duxbury and P. L. Leath, J. Phys A 20, L411 (1987); Y. S. Li and P. M. Duxbury, Phys. Rev. B 36, 5411 (1987); S. Roux, A. Hansen, E. L. Hinrichsen and D. Sornette, J. Phys A 24, 1625 (1991); B. Kahng, G. G. Batrouni and S. Redner, J. Phys A 20, L827 (1987);Google Scholar
[6] Duxbury, P. M. and Leath, P. L., Phys. Rev. Lett. 72, 2805 (1994);Google Scholar
[7] Sornette, D., J. Phys (Paris) 50, 745 (1989).Google Scholar
[8] Hansen, A., Hinrichsen, E. L. and Roux, S., Phys. Rev. B 43, 665 (1991).Google Scholar
[9] Ambegaokar, V., Halperin, B. I. and Langer, J. S., Phys. Rev. B 4, 2612 (1971).Google Scholar
[10] Doussal, P. Le, Phys. Rev. B 39, 881 (1989).Google Scholar
[11] Angulo, R. F. and Medina, E., Physica A 191, 410 (1992); J. Stat. Phys. 75, 135 (1994).Google Scholar
[12] Angulo, R. F. and Medina, E., to be published.Google Scholar