Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T23:26:17.430Z Has data issue: false hasContentIssue false

Room-Temperature Synthesis of CuInQ2 (Q = S or Se) in Non-Aqueous Solution Using an Organoindium Reagent

Published online by Cambridge University Press:  22 February 2011

Aloysius F. Hepp
Affiliation:
NASA Lewis Research Center, M.S. 302-1, Cleveland, OH 44135
Maria T. Andras
Affiliation:
NASA Lewis Research Center, M.S. 302-1, Cleveland, OH 44135 National Research Council/NASA Lewis Research Center Resident Research Associate
Christopher C. Landry
Affiliation:
Department of Chemistry, Harvard University, Cambridge, MA 02138
Andrew R. Barron
Affiliation:
Department of Chemistry, Harvard University, Cambridge, MA 02138
Get access

Abstract

We have discovered a novel two-phase synthesis of CuInSe2 at 25° from Cu2Se and (C5H5)3In in 4-methylpyridine (4-MePy). An analogous reaction to produce CulnS2 must be run at 140°C in refluxing 4-MePy in the presence of 2-mercaptopyridine. Microscopy of CuInSe2 produced at 25°C shows it to be platelet-shaped crystallites with an approximate particle size of 10 microns, less than 2% C and H, with a small amount of unidentified crystalline impurity. Our results demonstrate that it is possible to produce from solution a material that is ordinarily synthesized in bulk or films at much higher temperatures or using extraneous reagents and/or electrons.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Woodyard, J. and Landis, G.A., Solar Cells 31, 297 (1991).Google Scholar
2. Kazmerski, L.L. and Wagner, S., in Current Topics in Photovoltaics, edited by Coutts, T. J. and Meakin, J. D. (Academic Press, London, 1985) pp. 41109.Google Scholar
3. Shay, J.L., Wagner, S., and Kasper, H.M., Appl. Phys. Lett. 27, 89 (1975).Google Scholar
4. Kazmerski, L.L., Ayyagari, M.S., Sanborn, G.A., White, F.R., and Merrill, A.J., Thin Solid Films 37, 323 (1976).Google Scholar
5. Landis, G.A. and Hepp, A.F., in Proceedings of the European Space Power Conference, ESA SP-320, Vol. 1, edited by Hunt, J.J. (European Space Agency, Noordwijk, The Netherlands, 1991) pp. 511522.Google Scholar
6. Mickelsen, R.A., Chen, W.S., Stanbery, B.J., Dursch, H., Stewart, J.M., Hsiao, Y.R., and Devaney, W., in Proceedings of the 18th IEEE Photovoltaics Specialist Conference, Vol. II, (Institute of Electrical and Electronic Engineers, New York, 1985) pp. 10691073.Google Scholar
7. Zweibel, K., Ullal, H.S., and Mitchell, R.L., in Proceedings of the 21st IEEE Photovoltaics Specialist Conference, Vol. I, (Institute of Electrical and Electronic Engineers, New York, 1990) pp. 458466.Google Scholar
8. Basol, B.M., Kapur, V.K., Halani, A., and Leidholm, C., Solar Energy Materials and Solar Cells 29, 163 (1993).Google Scholar
9. Mooney, G.D., Hermann, A.M., Tuttle, J.R., Albin, D.S., and Noufi, R., Appl. Phys. Lett. 58, 2678 (1991).Google Scholar
10. Tuttle, J.R., Albin, D.S., and Noufi, R., Solar Cells 30, 21 (1991).Google Scholar
11. Moskowitz, P.D. and Fthenakis, V.M., Solar Cells 30, 89 (1991).Google Scholar
12. Landis, G.A. and Perino, M.A., in Space Manufacturing 7 Space Resources To Improve Life On Earth, edited by Faughnan, B. and Maryniak, G., (Amercian Institute of Aeronautics and Astronautics, Washington, D.C., 1989) pp. 144151.Google Scholar
13. Poland, J.S. and Tuck, D.G., J. Organomet. Chem. 42, 307 (1972).Google Scholar
14. Hepp, A.F., Andras, M.T., Bailey, S.G., and Duraj, S.A., Adv. Mater. Opt. Elec. 1, 99 (1992).Google Scholar
15. Hampden-Smith, M.J., Kodas, T.J., Paffett, M., Farr, J.D., Shin, H.-K., Chem. Mater. 2, 636 (1990), and references therein.Google Scholar
16. Ramli, E., Rauchfuss, T.B., and Stern, C.L., J. Am. Chem. Soc. 112, 4043 (1990).Google Scholar
17. Dev, S., Ramli, E., Rauchfuss, T.B., and Wilson, S.R., Inorg. Chem. 30, 2514 (1991).Google Scholar
18. Lee, S.C. and Holm, R.H., Angew. Chem. Int. Ed. Engl. 29, 840 (1990).Google Scholar
19. Hepp, A.F., Eckles, W.E., Duraj, S.A., Andras, M.T., Fanwick, P.E., Richman, R.M., Sabat, M.L., Power, M.B., Gordon, E.M., and Barron, A.R., Covient Ceramics II: Non-Oxides, edited by Barron, A.R., Fischman, G.S., Fury, M.A., and Hepp, A.F. (Mater. Res. Soc. Proc. 000, Pittsburgh, PA, 1994) pp. 999–999.Google Scholar
20. Chu, T.L., Chu, S.S., Chien, C.P., and Lo, D.H., J. Electrochem. Soc. 132, 2020 (1985).Google Scholar
21. Landry, C.C. and Barron, A.R., Science 260, 1653 (1993).Google Scholar
22. Brown, B.J. and Bates, C.W., J. Appl. Phys. 68, 2517 (1990).Google Scholar
23. Babu, S. Moorthy, Dhanasekaran, R., and Ramasamy, P., Thin Solid Films 198, (1991).Google Scholar
24. Dhingra, S., Kim, K.-W., and Kanatzidis, M.G., in Chemical Perspectives of Microelectronic Materials II, edited by Interrante, L.V., Jensen, K.F., Dubois, L.H., and Gross, M.E., (Mater. Res. Soc. Proc. 204, Pittsburgh, PA, 1991) pp. 163168.Google Scholar
25. Nomura, R., Seki, S., and Matsuda, H., J. Mater. Chem. 2, 765 (1992).Google Scholar
26. Hirpo, W., Dhingra, S., Sutorik, A., and Kanatzidis, M.G., J. Am. Chem. Soc. 115, 1597 (1993).Google Scholar