Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:02:21.487Z Has data issue: false hasContentIssue false

Room-Temperature Operation of Vertical-Cavity Surface-Emitting Laser on Si Substrate

Published online by Cambridge University Press:  21 February 2011

Takashi Egawa
Affiliation:
Research Center for Micro-Structure Devices, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
Yoshiaki Hasegawa
Affiliation:
Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
Takashi Jimbo
Affiliation:
Research Center for Micro-Structure Devices, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
Masayoshi Umeno
Affiliation:
Research Center for Micro-Structure Devices, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan Department of Electrical and Computer Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan
Get access

Abstract

AlGaAs/GaAs single-quantum-well (SQW) vertical-cavity surface-emitting laser diodes (VCSELDs) with 20 pairs of AlAs (71 nm)/GaAs (59 nm) distributed Bragg reflectors (DBRs) were grown on Si substrates by metalorganic chemical vapor deposition using the conventional two-step growth technique. The measured reflectivity of the 20 pairs of AlAs/GaAs DBRs was 93 % at the wavelength of 860 nm. The AlGaAs/GaAs SQW VCSELD on Si exhibited a threshold current of 79 mA and a threshold current density of 4.9 kA/cm2 under pulsed condition at room temperature. The emission wavelength was 840.3 nm with the full width at half maximum of 0.28 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Choi, H. K., Turner, G. W., Windhorn, T. H. and Tsaur, B.-Y., IEEE Electron Device Lett. EDL–7, 500(1986).Google Scholar
2 Egawa, T., Jimbo, T. and Umeno, M., Jpn. J. Appl. Phys. 32,650 (1993).Google Scholar
3 Egawa, T., Jimbo, T. and Umeno, M., IEEE Photon. Technol. Lett. 4, 612 (1992).Google Scholar
4 Choi, H. K., Wang, C. A. and Karam, N. H., Appl. Phys. Lett. 59, 2634 (1991).Google Scholar
5 Iga, K., Koyama, F. and Kinoshita, S., IEEE J. Quantum Electron. QE–24, 1845 (1988).Google Scholar
6 Deppe, D. G., Chand, N., van der Ziel, J. P. and Zydzik, G. J., Appl. Phys. Lett. 56, 740 (1990).Google Scholar
7 Jewell, J. L., Harbison, J. P., Schere, A., Lee, Y. H. and Florez, L. T., IEEE J. Quantum Electron. 27, 1332 (1991).Google Scholar
8 Yamaguchi, M., Tachikawa, M., Sugo, M., Kondo, S. and Itoh, Y., Appl. Phys. Lett. 56, 27 (1990).Google Scholar
9 Egawa, T., Soga, T., Jimbo, T. and Umeno, M., IEEE J. Quantum Electron. QE–27, 1798 (1991).Google Scholar
10 Egawa, T., Jimbo, T. and Umeno, M., Appl. Phys. Lett. 61, 2923 (1992).Google Scholar
11 Wang, Y. H., Tai, K., Hsieh, Y. F., Chu, S. N. G., Wynn, J. D. and Cho, A. Y., Appl. Phys. Lett. 57, 1613 (1990).Google Scholar