Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:33:18.114Z Has data issue: false hasContentIssue false

Room-temperature Ferromagnetism in Nanostructured Co-doped ZnO

Published online by Cambridge University Press:  01 February 2011

M. Wei
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
N. Khare
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
K. A. Yates
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
D. Zhi
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
J. L. MacManus-Driscoll
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
Get access

Abstract

Nanosized Co-doped ZnO samples were synthesized using an ultrasonic spray assisted chemical vapour deposition method. Microstructural and magnetic properties of these samples were studied. The room-temperature ferromagnetism was observed in the Co-doped ZnO. Also, x-ray analysis revealed a wurtzite ZnO structure with a small change of the lattice constants due to the doping of Co in ZnO. Raman spectroscopy of the Co-doped ZnO films indicated direct substitution of Co. Scanning electron microscopy showed nanostructured Co-doped ZnO with a ring or cup shape. Transmission electron microscopy analysis revealed nano grains within the rings of an average diameter of around 10 nm. Both energy dispersive spectroscopy and energy-filtered transmission electron microscopy indicated a uniform distribution of Co.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ohno, H., Science 281, 951 (1998).Google Scholar
2. Prinz, G. A., Science 282, 1660 (1998).Google Scholar
3. Chambers, S. A., Mater. Today 4, 34 (2002).Google Scholar
4. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., and Ferrand, D., Science 287, 1019 (2000).Google Scholar
5. Sato, K. and Katayama-Yoshida, H., Semicond. Sci. Technol. 17, 367 (2002).Google Scholar
6. Ando, K., Saito, H., Jin, Z., Fukumura, T., Kawasaki, M., Matsumoto, Y., and Koinuma, H., J. Appl. Phys. 89, 7284 (2001).Google Scholar
7. Kim, J. H., Kim, H., Ihm, Y. E., and Choo, W. K., J. Appl. Phys. 92, 6066 (2002).Google Scholar
8. Sharma, P., Gupta, A., Rao, K. V., Owens, F. J., Sharma, R., Ahuja, R., Guillen, J. M. Osorio, Johansson, B., and Gehring, G. A., Nature Materials 2, 673 (2003).Google Scholar
9. Han, S-J., Song, J. W., Yang, C.-H., Park, S. H., Park, J.-H., Jeong, Y. H., and Rhie, K. W., Appl. Phys. Lett. 81, 4212 (2002).Google Scholar
10. Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S., Koinuma, H., Science 291, 854 (2001).Google Scholar
11. Ogale, S. B., Choudlhary, R. J., Buban, J. P., Lofland, S. E., Shinde, S. R., Kale, S. N., Kulkarni, V. N., Higgins, J., Lanci, C., Simpson, J. R., Browning, N. D., Sarma, S. Das, Drew, H. D., Greene, R. L., and Venkatesan, T., Phys. Rev. Lett. 91 (7), 77205 (2003).Google Scholar
12. Wei, M., Braddon, N., Zhi, D., Midgley, P. A., Chen, S. K., Blamire, M.G., and MacManus-Driscoll, J. L., Appl. Phys. Lett. 86, (2005).Google Scholar
13. He, J., Xu, S., Yoo, Y. K., Xue, Q., Lee, H. C., Cheng, S., Xiang, X.D., Dionne, G. F., Takeuchi, I., Appl. Phys. Lett. 86, 052503 (2005).Google Scholar
14. Wei, M., Zhi, D., and MacManus-Driscoll, J. L., Nanotechnology 16 (2005).Google Scholar