Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:12:23.660Z Has data issue: false hasContentIssue false

Room Temperature Negative Differential Resistance in Nanoscale Molecular

Published online by Cambridge University Press:  21 March 2011

J. Chen
Affiliation:
Department of Electrical Engineering, Yale University, P.O. Box 208284, New Haven, CT 06520
W. Wang
Affiliation:
Department of Electrical Engineering, Yale University, P.O. Box 208284, New Haven, CT 06520
M. A. Reed
Affiliation:
Department of Electrical Engineering, Yale University, P.O. Box 208284, New Haven, CT 06520
A. M. Rawlett
Affiliation:
Center for Nanoscale Science and Technology, Rice University, MS 222, 6100 Main Street, Houston, TX 77005
D. W. Price
Affiliation:
Center for Nanoscale Science and Technology, Rice University, MS 222, 6100 Main Street, Houston, TX 77005
J. M. Tour
Affiliation:
Center for Nanoscale Science and Technology, Rice University, MS 222, 6100 Main Street, Houston, TX 77005
Get access

Abstract

Molecular devices utilizing active self-assembled monolayer (SAM) (containing nitroamine (2′-amino-4-ethynylphenyl-4′-ethynylphenyl-5′-nitro-1-benzenethiolate) and nitro (4-ethynylphenyl-4′-ethynylphenyl-2′-nitro-1-benzenethiolate) redox center) as the active component are reported. Current-voltage measurements of the devices exhibited negative differential resistance at room temperature and an on-off peak-to-valley ratio in excess of 1000:1 at low temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Esaki, L., Phys. Rev. 109, 603 (1958).Google Scholar
2. Chang, L. L., Esaki, L., Tsu, R., Appl. Phys. Lett. 24, 593 (1974).Google Scholar
3. Sollner, T. C. L. G. et al. , Appl. Phys. Lett. 43, 588 (1983).Google Scholar
4. Tsuchiya, M., Sakaki, H., Yoshino, J., Jpn. J. Appl. Phys. 24, L466 (1985).Google Scholar
5. Sze, S. M. (Eds), High-Speed Semiconductor Devices, (Wiley, New York, 1990).Google Scholar
6. Zhou, C. et al. , Appl. Phys. Lett. 71, 611 (1997).Google Scholar
7. Chen, J., Reed, M. A., Rawlett, A. M., Tour, J. M., Science 286, 1550 (1999).Google Scholar
8. Moroni, M. et al. , Macromolecules 1997, 30, 1964.Google Scholar
9. Sonogashira, K., Tohda, Y., and Hagihara, N., Tetraherdon Lett. 4467 (1975).Google Scholar
10. Pearson, D. L. and Tour, J. M., J. Org. Chem. 62, 1376 (1997).Google Scholar
11. Tour, J. M. et al. , J. Am. Chem. Soc. 117, 9529 (1995).Google Scholar
12. Zhou, C., thesis, Yale University (1999).Google Scholar
13. Smet, J. H., Broekaert, T. P. E., and Fonstad, C. G., J. Appl. Phys. 71, 2475 (1992)Google Scholar
14. Söderström, J. R., Chow, D. H., and McGill, T. C., J. Appl. Phys. 66, 5106 (1989)Google Scholar
15. Day, J. et al. , J. Appl. Phys. 73, 1542 (1993).Google Scholar
16. Tsai, H. H. et al. , IEEE Elec. Dec. Lett. 15, 357 (1993).Google Scholar
17. The case where Z = SH was avoided due to anomalies that could be caused through electrochemical disulfide formation and cleavage events.Google Scholar
18. Deshpande, M. R. et al. , Phys. Rev. Lett. 76, 1328 (1996).Google Scholar