Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T20:31:07.813Z Has data issue: false hasContentIssue false

Room Temperature Growth of Indium Tin Oxide Films by Ultraviolet-Assisted Pulsed Laser Deposition

Published online by Cambridge University Press:  10 February 2011

V. Craciun
Affiliation:
Materials Science & Engineering, University of Florida, Gainesville, FL 32611
D. Craciun
Affiliation:
National Institute for Laser, Plasma and Radiation Physics, Bucharest, Romania
Z. Chen
Affiliation:
Materials Science & Engineering, University of Florida, Gainesville, FL 32611
J. Hwang
Affiliation:
Physics Department, University of Florida, Gainesville, FL 32611
R.K. Singh
Affiliation:
Materials Science & Engineering, University of Florida, Gainesville, FL 32611
Get access

Abstract

The characteristics of indium tin oxide (ITO) films grown at room temperature on (100) Si and Corning glass substrates by an in situ ultraviolet-assisted pulsed laser deposition (UVPLD) technique have been investigated. The most important parameter, which influenced the optical and electrical properties of the grown films, was the oxygen pressure. For oxygen pressure below 1 mtorr, films were metallic, with very low optical transmittance and rather high resistivity values. The resistivity value decreased when using higher oxygen pressures while the optical transmittance increased. The optimum oxygen pressure was found to be around 10 mtorr. For higher oxygen pressures, the optical transmittance was better but a rapid degradation of the electrical conductivity was noticed. X-ray photoelectron spectroscopy investigations showed that ITO films grown at 10 mtorr oxygen are fully oxidized. All of the grown films were amorphous regardless of the oxygen pressure used.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kim, H., Pique, A., Horwitz, J. S., Mattoussi, H., Murata, H., Kafafi, Z. H., and Chrisey, D. B., Appl. Phys. Lett. 74, 3444 (1999).Google Scholar
2 Tang, C. W. and Van Slyke, S. A., Appl. Phys. Lett. 51, 913 (1987).Google Scholar
3 Matsumoto, F., Asia Display'95, p. 31 (1995).Google Scholar
4 Chrisey, D. B. and Hubler, G. K., Pulsed Laser Deposition of Thin Films, Wiley, New York, 1994.Google Scholar
5 Teghil, R., Marotta, V., Giardini Guidoni, A., Palma, T. M. Di, Flamini, C., Appl. Surf. Sci. 138–139, 522 (1999).Google Scholar
6 Adurodija, F. O., Izumi, H., Ishira, T., Yoshioka, H., Yamada, K., Matsui, H., and Motoyama, M., Thin Solid Films 350, 79 (1999).Google Scholar
7 Yamada, Y., Suzuki, N., Makino, T., and Yoshida, T., J. Vac. Sci. Technol. A 18, 83 (2000).Google Scholar
8 Kim, H., Gilmore, C. M., Pique, A., Horwitz, J. S., Mattoussi, H., Murata, H., Kafafi, Z. H., and Chrisey, D. B., J. Appl. Phys. 86, 6451 (1999).Google Scholar
9 Akagi, Y., Hanamoto, K., Suzuki, H., Katoh, T., Sasaki, M., Imai, S., Tsudagawa, M., Nakayama, Y., and Miki, H., Jpn. J. Appl. Phys. 38, 6846 (1999).Google Scholar
10 Laux, S., Kaiser, N., Zoller, A., Gotzelmann, R., Lauth, H., and Bernitzki, H., Thin Solid Films 335, 1 (1998).Google Scholar
11 Baulch, D. L., Cox, R. A., Hampson, R. F. Jr, Kerr, J. A., Troe, J., and Watson, R.T., J. Phys. Chem. Ref. Data 9, 295 (1980).Google Scholar
12 Otis, C. E., Gupta, A., and Braren, B., Appl. Phys. Lett. 62, 102 (1993).Google Scholar
13 So, S. K., Choi, W. K., Cheng, C. H., Leung, L. M., and Kwong, C. F., Appl. Phys. A 68, 447 (1999).Google Scholar
14 Sugiyama, K., Ishii, H., Ouchi, Y., and Seki, K., J. Appl. Phys. 87, 295 (2000).Google Scholar
15 Craciun, V. and Singh, R.K., Electrochemical and Solid-State Lett. 2, 446 (1999).Google Scholar
16 Craciun, V., Singh, R.K., Perriere, J., Spear, J., and Craciun, D., Appl. Phys. A 69 [Supl.], S531 (1999).Google Scholar
17 Kim, S.-S., Choi, S.-Y., Park, C.-G., Jin, H.-W., Thin Solid Films 347, 155 (1999).Google Scholar
18 Rhode, D., Kersten, H., Eggs, C., and Hippler, R., Thin Solid Films 305, 164 (1997).Google Scholar
19 Zhu, F., Huan, C. H. A., Zhang, K., and Wee, A. T. S., Thin Solid Films 359, 244 (2000).Google Scholar
20 Wengenmair, H., Gerlach, J. W., Preckwinkel, U., Stritzker, B., and Rauschenbach, B., Appl. Surf. Sci. 99, 313 (1996).Google Scholar