Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T07:23:56.371Z Has data issue: false hasContentIssue false

Room Temperature Ferromagnetism and Band Gap Engineering in Mg Doped ZnO RF/DC Sputtered Films

Published online by Cambridge University Press:  05 April 2013

Sreekanth K. Mahadeva
Affiliation:
Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm, SE 100 44, Sweden Department of Physics, Amrita Vishwa Vidyapeetham University, Amritapuri Campus, Kollam 690 525, Kerala, India
Zhi-Yong Quan
Affiliation:
Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm, SE 100 44, Sweden Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Shanxi Normal University, Linfen 041004, China
Jin-Cheng Fan
Affiliation:
Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm, SE 100 44, Sweden School of Materials and Engineering, Anhui University of Technology, Maanshan, 243002, China
Hasan B. Albargi
Affiliation:
Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U. K.
Gillian A Gehring
Affiliation:
Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U. K.
Anastasia V. Riazanova
Affiliation:
Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm, SE 100 44, Sweden
Lyubov M. Belova
Affiliation:
Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm, SE 100 44, Sweden
K. V. Rao
Affiliation:
Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm, SE 100 44, Sweden
Get access

Abstract

Mg doped ZnO thin films were prepared by DC/RF magnetron co-sputtering in (Ar+O2) ambient conditions using metallic Mg and Zn targets. We present a comprehensive study of the effects of film thickness on the structural, optical and magnetic properties. Room temperature ferromagnetism was observed in the films and the saturation magnetization (MS) increases at first as the film’s thickness increases and then decreases. The MS value as high as ∼15.76 emu/cm3 was achieved for the Mg-doped ZnO film of thickness 120 nm. The optical band gap of the films determined to be in the range 3.42 to 3.52 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Furdyna, J. K., J. Appl. Phys. 64, R29 (1988).CrossRefGoogle Scholar
Sarma, S. D., American Scientist 89, 516 (2001).CrossRefGoogle Scholar
Dietl, T., Ohno, H., Matsukura, F., Cibert, J., and Ferrand, D., Science 287, 1019 (2000).CrossRefGoogle Scholar
Coey, J. M. D., Douvalis, A. P., and Fitzgerald, C. B., Nature Mater. 4, 173 (2005).CrossRefGoogle Scholar
Kapilashrami, M., Xu, J., Ström, V., Rao, K. V., and Belova, L., Appl. Phys. Lett. 95, 033104 (2009).CrossRefGoogle Scholar
Xing, G., Wang, D., Yi, J., Yang, L., Gao, M., He, M., Yang, J., Ding, J., Sum, T. C., and Wu, T., Appl. Phys. Lett. 96, 112511 (2010).CrossRefGoogle Scholar
Yi, J. B., Lim, C. C., Xing, G. Z., Fan, H. M., Van, L. H., Huang, S. L., Yang, K. S., Huang, X. L., Qin, X. B., Wang, B. Y., Wu, T., Wang, L., Zhang, H. T., Gao, X. Y., Liu, T., Wee, A. T. S., Feng, Y. P., and Ding, J., Phys. Rev. Lett. 104, 137201 (2010).CrossRefGoogle Scholar
Araujo, C. M., Kapilashrami, M., Xu, J., Jayakumar, O. D., Nagar, S., Wu, Y., Århammar, C., Johansson, B., Belova, L., Ahuja, R., Gehring, G. A., Rao, K. V., Appl. Phys. Lett. 96, 232505 (2010).CrossRefGoogle Scholar
Nagar, S., D Jayakumar, O., Belova, L., and Rao, K.V., Materials Express 2, 233(2012).CrossRefGoogle Scholar
Özgür, Ü., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S.-J., and Morkoçd, H., J. Appl. Phys. 98, 041301(2005).CrossRefGoogle Scholar
Ohtomo, A., Tamura, K., Kawasaki, M., Makino, T., Segawa, Y., Tang, Z. K., Wong, G. K. L., Matsumoto, Y., and Koinuma, H., Appl. Phys. Lett. 77, 2204 (2000).CrossRefGoogle Scholar
Li, Y., Deng, R., Yao, B., Xing, G., Wang, D., and Wu, T., Appl. Phys. Lett. 97, 102506 (2010).CrossRefGoogle Scholar
Tan, S. T., Chen, B. J., Sun, X. W., Fan, W. J., Kwok, H. S., Zhang, X. H., and Chua, S. J., J. Appl. Phys. 98, 013505(2005).CrossRefGoogle Scholar
Franz, C., Giar, M., Heinemann, M., Czerner, M., and Heiliger, C., MRS Proceedings, 1494, mrsf12-1494-z04-32 doi:10.1557/opl.2012.1709 (2013).CrossRefGoogle Scholar
Ohtomo, A., Kawasaki, M., Koida, T., Masubuchi, K., Koinuma, H., Sakurai, Y., Yoshida, Y., Yasuda, T., and Segawa, Y., Appl. Phys. Lett. 72, 2466(1998).CrossRefGoogle Scholar