Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:19:30.509Z Has data issue: false hasContentIssue false

Room and Cryogenic Temperature Operation of 280 nm Deep Ultraviolet Light Emitting Diodes

Published online by Cambridge University Press:  11 February 2011

Maxim Shatalov
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208, U.S.A.
Vinod Adivarahan
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208, U.S.A.
Jian Ping Zhang
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208, U.S.A.
Ashay Chitnis
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208, U.S.A.
Shuai Wu
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208, U.S.A.
Radhika Pachipulusu
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208, U.S.A.
Vasavi Mandavilli
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208, U.S.A.
M. Asif Khan
Affiliation:
Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208, U.S.A.
Get access

Abstract

We present a study of the electrical and optical characteristics of 280 nm emission deep ultraviolet light emitting diodes (LED) at room and cryogenic temperatures. At low bias the defect assisted carrier tunneling primarily determines the current conduction. The room-temperature spectral performance and optical power are limited mostly by pronounced deep level defect assisted radiative and non-radiative recombination as well as poor electron confinement in the active region. At temperatures below 100 K the electroluminescence peak intensity increases by more than one order of magnitude due to suppression of non-radiative recombination channels indicating that with a proper device design and improved material quality, milliwatt power 280 nm LED are viable.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nishida, T., Saito, H., and Kobayashi, N., Appl. Phys. Lett. 79, 711 (2001).Google Scholar
2. Chitnis, A., Zhang, J. P., Adivarahan, V., Wu, S., Sun, J., Shatalov, M., Yang, J., Simin, G., and Khan, M. Asif, Jpn. J. Appl. Phys. 41, L450 (2002).Google Scholar
3. Adivarahan, V., Zhang, J. P., Chitnis, A., Wu, S., Sun, J., Pachipulusu, R., Shatalov, M., and Khan, M. Asif, Jpn. J. App. Phys. 41, L435 (2002).Google Scholar
4. Zhang, J. P., Wang, H. M., Gaevski, M. E., Chen, C. Q., Fareed, Q., Yang, J. W., Simin, G., and Khan, M. Asif. Appl. Phys. Lett. 80, 3542 (2002).Google Scholar
5. Wang, H. M., Zhang, J. P., Chen, C. Q., Fareed, Q., Yang, J. W., and Khan, M. Asif, Appl. Phys. Lett. 81, 604 (2002).Google Scholar
6. Shatalov, M., Simin, G., Zhang, J. P., Adivarahan, V., Koudymov, A., Pachipulusu, R., and Khan, M. A., IEEE Electron Device Lett. 23, 452 (2002).Google Scholar
7. Chitnis, A., Pachipulusu, R., Mandavilli, V., Shatalov, M., Kuokstis, E., Zhang, J. P., Adivarahan, V., Wu, S., Simin, G., and Khan, M. Asif, Appl. Phys. Lett. 81, 2938 (2002).Google Scholar
8. Shatalov, M., Chitnis, A., Mandavilli, V., Pachipulusu, R., Zhang, J. P., Adivarahan, V., Wu, S., Simin, G., Khan, M. Asif, Tamulaitis, G., Sereika, A, Yilmaz, I., Shur, M. S., and Gaska, R., Appl. Phys. Lett. to be published.Google Scholar
9. Adivarahan, V., Wu, S., Chitnis, A., Pachipulusu, R., Mandavilli, V., Shatalov, M., Zhang, J. P., Khan, M. Asif, Tamulaitis, G., Sereika, A, Yilmaz, I., Shur, M. S., and Gaska, R., Appl. Phys. Lett. 81, 3666 (2002).Google Scholar
10. Zhang, J. P., Khan, M. Asif, Sun, W. H., Wang, H. M., Chen, C. Q., Fareed, Q., Kuokstis, E., and Yang, J. W., Appl. Phys. Lett. 81, 4392 (2002).Google Scholar
11. Zhang, J. P., Chitnis, A., Adivarahan, V., Wu, S., Mandavilli, V., Pachipulusu, R., Shatalov, M., Simin, G., Yang, J. W., and Khan, M. Asif, Appl. Phys. Lett. 81, 4910 (2002).Google Scholar