Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T15:20:52.708Z Has data issue: false hasContentIssue false

Roll-to-Roll Front Contact Patterning by Wire Shading

Published online by Cambridge University Press:  20 June 2011

R. Merz
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
M. B. Schubert
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
J. H. Werner
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
Get access

Abstract

Wire shading during thin film deposition is a promising approach to low-cost, high volume manufacturing of flexible thin film photovoltaic modules. This contribution demonstrates successful patterning of a transparent conducting oxide layer by wire shading during dynamic web coating. Continuous sputter deposition of Al-doped ZnO on a 30 cm wide polymer foil and simultaneous wire shading form 1 cm wide and 300 cm long front contact stripes for thin film photovoltaic modules. Analysing the distribution of lateral shunt resistances after separating the initial 28 stripes into 1323 pieces, yields a patterning success of 97.3 %. Thus the technique seems well suited for flexible modules from organic solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Gupta, Y., Liers, H., Woods, S., Young, S. and Deblasio, R., in: Proc. 16th IEEE Photovolt. Spec. Conf. (IEEE, Piscataway, USA, 1982), p. 1092 Google Scholar
[2] Repmann, T., Sehrbrock, B., Zahren, C., Siekmann, H. and Rech, B., Sol. En. Mater. Sol. Cells 90, 3047 (2006)Google Scholar
[3] Izu, M. and Ovshinsky, S. R., Thin Solid Films 119, 55 (1984)Google Scholar
[4] Stannowski, B., Schlatmann, R., Hamers, E.A.G., Lenssen, J.M., Talma, A.G., Dubbeldam, G.C. and Jongerden, G.J., in Proc. 20th European Photovoltaic Solar Energy Conference, edited by Palz, W., Ossenbrink, H., and Helm, P. (WIP, Munich, 2005) p.1537.Google Scholar
[5] Löffler, J., Ballif, C., Brecl, K., Brooks, K., Finck, C., Fischer, D., Haug, F. J., Mayerhofer, R., Soppe, W. J., Späth, M., Topic, M., and Wutz, M., in Proc. 17th International Photovoltaic Science and Engineering Conference (2007), p. 339.Google Scholar
[6] Merz, R., Adachi, M., Schubert, M. B., and Werner, J. H., in Proc. 23rd European Photovoltaic Solar Energy Conference, edited by Lincot, D., Ossenbrink, H. and Helm, P. (WIP, Munich, 2008), p. 2411.Google Scholar
[7] Merz, R., Kistner, J., Bouattour, M. A., and Schubert, M. B., phys. stat. sol. (A) 207, 686 (2010)Google Scholar
[8] Merz, R., Kistner, J., Schubert, M. B., and Werner, J. H., Thin Film Solar Technology 7409, 74090K (2009).Google Scholar
[9] MVSystems Inc., Golden (CO, USA), www.mvsystemsinc.com Google Scholar
[10] Madan, A. and Heng, J. O.. Semiconductor vacuum deposition system and method having a reel-to-reel substrate cassette, Patent US 6488777 (2002).Google Scholar
[11] Serin, T. and Serin, N. Semicond. Sci. Technol. 9, 2097 (1994)Google Scholar