Published online by Cambridge University Press: 28 May 2015
Nanostructured coatings have been prepared on a flexible, moving paperboard using deposition of ca. 10-50-nm-sized titanium dioxide and silicon dioxide nanoparticles generated by a liquid flame spray process, directly above the paperboard, to achieve improved functional properties for the material. With moderately high production rate (∼ g/min), the method is applicable for thin aerosol coating of large area surfaces. LFS-made nanocoating can be synthesized e.g. on paper, board or polymer film in roll-to-roll process. The degree of particle agglomeration is governed by both physicochemical properties of the particle material and residence time in aerosol phase prior to deposition. By adjusting the speed of the substrate, even heat sensitive materials can be coated. In this study, nanoparticles were deposited directly on a moving paperboard with line speeds 50-300 m/min. Functional properties of the nanocoating can be varied by changing nanoparticle material; e.g. TiO2 and SiO2 are used for changing the surface wetting properties. If the liquid precursors are dissolved in one solution, synthesis of multi component nanoparticle coatings is possible in a one phase process. Here, we present analysis of the properties of LFS-fabricated nanocoatings on paperboard. The thermophoretic flux of nanoparticles is estimated to be very high from the hot flame onto the cold substrate. A highly hydrophobic coating was obtained by a mass loading in the order of 50–100 mg/m2 of titanium dioxide on the paperboard.