Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:33:58.344Z Has data issue: false hasContentIssue false

Rolled-up In(Ga)As/GaAs Nanotubes Diameter as a Function of Structural Properties

Published online by Cambridge University Press:  01 February 2011

Ch. Deneke
Affiliation:
Max-Planck-Instiut für Festkörperforschung, Heisenberstr. 1,70569 Stuttgart, Germany
C. Müller
Affiliation:
Max-Planck-Instiut für Festkörperforschung, Heisenberstr. 1,70569 Stuttgart, Germany
O.G. Schmidt
Affiliation:
Max-Planck-Instiut für Festkörperforschung, Heisenberstr. 1,70569 Stuttgart, Germany
Get access

Abstract

Inherently strained bilayers of In(Ga)As/GaAs, Epitaxially grown on top of an AlAs sacrificial buffer layer roll-up into free-standing nanotubes if they are released from their substrate by selective underetching, Here, we preseant a systematic study of the tube diameter as a function of total bilayer thickness and the ratio between the two layer thinknesses. We show that the diameters of the tubes are well described by a continous mechanical model.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Prinz, V.Ya, Seleznev, V. A., Gutakovsky, A.K., Chehovskiy, A.V., Preobrazhenskii, V.V., Putyato, M.A., Gavrilova, T.A., Physica E 6, 828831 (2000).Google Scholar
2. Prinz, V.Ya., Golod, S.V., Mashanov, V.I., and Gutakovsky, A.K.: Inst. Phys. Conf. Ser. 166, 203 (2000)Google Scholar
3. Schmidt, O.G., Schmarje, N., Deneke, Ch., Müller, C., Jin-Phillipp, N.Y., Adv. Mater. 13(10), 756759 (2001).Google Scholar
4. Schmidt, O.G., Eberl, K., Nature 410, 168 (2001)Google Scholar
5. Schmidt, O. G., Deneke, Ch., Nakamura, Y., Zapf-Gottwick, R., Müller, C., and Jin-Phillipp, N. Y., Adv. Sol. State Phys. (submitted).Google Scholar
6. Schmidt, O.G., Deneke, C., Schmarje, N., Müller, C., and Jin-Phillipp, N. Y., Mat. Sci. Eng. C 19, 393 (2002).Google Scholar
7. Schmidt, O. G., Deneke, C., Manz, Y., and Müller, C., Physica E 13, 969 (2002).Google Scholar
8. Schmidt, O. G. and Jin-Phillipp, N. Y., Appl. Phys. Lett 78, 33103312 (2001)Google Scholar
9. Schmidt, O. G., Deneke, C. and Manz, Y. M., Proceedings of 8th Annual International Conference on Composites Engineering (ICCE), Tenerife, Spain, August 5-11 2001, p.823.Google Scholar
10. Vaccaro, P. O., Kubota, K., and Aid, T., Appl. Phys. Lett. 78, 2852 (2001).Google Scholar
11. Tsui, Y. C. and Clyne, T. W., Thins Solid Films 306, 2333 (1997).Google Scholar
12. Jain, S. C., Willander, M., and Maes, H., Semicond. Sci. Tech. 11(5), 641–71 (1996).Google Scholar
13. Bresse, J. F., Appl. Surf. Sci. 66, 14 (1993).Google Scholar
14. Mizokawa, Y., Komoda, O., and Miyase, S., Thin Solid Films 156(1), 127–43 (1988).Google Scholar
15. Evans, K. R., Kaspi, R., Ehret, J. E., Skowronski, M., and Jones, C. R., J. Vac.Sci. Tech. B 13, 1820–3 (1995).Google Scholar
16. Yablonovitch, E., Gmitter, T., Harbison, J. P., and Bhat, R., Appl. Phys. Lett. 51, 2222–4 (1987).Google Scholar
17. , Landolt-Börnstein, Numerical data and functional Relationship 17 IIIa, (Springer-verlag, Berlin, Heidelberg, New York 1982).Google Scholar