Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:01:42.090Z Has data issue: false hasContentIssue false

Roles of boron in growth of diamond grains in ultrananocrystalline diamond/hydrogenated amorphous carbon composite films prepared by pulsed laser deposition

Published online by Cambridge University Press:  21 February 2012

Shinya Ohmagari
Affiliation:
Department of Applied Science for Electronics and Materials, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
Yūki Katamune
Affiliation:
Department of Applied Science for Electronics and Materials, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
Hikaru Ichinose
Affiliation:
Department of Applied Science for Electronics and Materials, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
Tsuyoshi Yoshitake
Affiliation:
Department of Applied Science for Electronics and Materials, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
Get access

Abstract

Boron doped ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon composite films prepared by pulsed laser deposition were structurally investigated. With an increase in the boron content, the grain size was increased from 5 to 23 nm accompanying by the lattice constant approaching to that of bulk diamond. The near-edge X-ray absorption fine-structure revealed that boron atoms are preferentially distributed into grain boundaries. On the basis of the results, the roles of the boron atoms in the enhanced crystalline growth are discussed. We consider that the crystalline growth posterior to the nucleation is facilitated by boron atoms existing neighbor to UNCD grains or by boron-containing energetic species in plasma.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kulisch, W., Popov, C., Lefterova, E., Bliznakov, S., Reithmaier, J. P., and Rossi, F., Diamond Relat. Mater. 19, 449 (2010).Google Scholar
2. Shames, A. I., Panich, A. M., Porro, S., Rovere, M., Musso, S., Tagliaferro, A., Baidakova, M. V., Osipov, V. Y., Vul’, A. Y., Enoki, T., Takahashi, M., Osawa, E., Williams, O. A., Bruno, P., and Gruen, D. M., Diamond Relat. Mater. 16, 1806 (2007).Google Scholar
3. Zapol, P., Sternberg, M., Curtiss, L. A., Frauenheim, T., and Gruen, D. M., Phys. Rev. B 65, 045403 (2002).Google Scholar
4. Al-Riyami, S., Ohmagari, S., and Yoshitake, T., Appl. Phys. Express 3, 115102 (2010).Google Scholar
5. Williams, O.A., Nesladek, M., Daenen, M., Michaelson, S., Hoffman, A., Osawa, E., Haenen, K., and Jackman, R.B., Diamond Relat. Mater. 17, 1080 (2008).Google Scholar
6. Birrell, J., Gerbi, J. E., Auciello, O., Gibson, J. M., Gruen, D. M., and Carlisle, J. A., J. Appl. Phys. 93, 5606 (2003).Google Scholar
7. Ekimov, E. A., Sidorov, V. A., Bauer, E. D., Mel’nik, N. N., Curro, N. J., Thompson, J. D., and Stishov, S. M., Nature 428, 542 (2004).Google Scholar
8. Wang, X. H., Ma, G.-H. M., Zhu, Wei, Glass, J. T., Bergman, L., Turner, K. F., and Nemanich, R. J., Diamond Relat. Mater. 1, 828 (1992).Google Scholar
9. Wojewoda, T., Achatz, P., Ortéga, L., Omnès, F., Marcenat, C., Bourgeois, E., Blasé, X., Jomard, F., and Bustarret, E., Diamond Relat. Mater. 17, 1302 (2008).Google Scholar
10. Brunet, F., Deneuville, A., Germi, P., Pernet, M., and Gheeraert, E., J. Appl. Phys. 81, 1120 (1997).Google Scholar
11. May, P. W., Ludlow, W. J., Hannaway, M., Heard, P. J., Smith, J. A., and Rosser, K. N.: Diamond Relat. Mater. 17, 105 (2008).Google Scholar
12. Gajewski, W., Achatz, P., Williams, O. A., Haenen, K., Bustarret, E., Stutzmann, M., and Garrid, J. A.: Phys. Rev. B 79, 045206 (2009).Google Scholar
13. Barnard, A. S. and Sternberg, M.: J. Phys. Chem. B 110, 19307 (2006).Google Scholar
14. Yoshitake, T., Nagano, A., Itakura, M., Kuwano, N., Hara, T., and Nagayama, K.: Jpn. J. Appl. Phys. 46, L936 (2007).Google Scholar
15. Ohmagari, S., Yoshitake, T., Nagano, A., Ohtani, R., Setoyama, H., Kobayashi, E., Hara, T., and Nagayama, K., Jpn. J. Appl. Phys. 49, 031302 (2010).Google Scholar
16. Brunet, F., Deneuville, A., Germi, P., Pernet, M., and Gheeraert, E., J. Appl. Phys. 81, 1120 (1997).Google Scholar
17. Ohmagari, S., Yoshitake, T., Nagano, A., AL-Riyami, S., Ohtani, R., Setoyama, H., Kobayashi, E., and Nagayama, K., J. Nanomater. 2009, 876561 (2009).Google Scholar
18. Ray, S. C., Tsai, H. M., Bao, C. W., Chiou, J. W., Jan, J. C., Krishna Kumar, K. P., Pong, W. F., Tsai, M.- H., Chattopadhyay, S., Chen, L. C., Chien, S. C., Lee, M. T., Lin, S. T., and Chen, K. H., J. Appl. Phys. 96, 208 (2004).Google Scholar
19. Hsieh, H. H., Chang, Y. K., Pong, W. F., Tsai, M.-H., Chien, F. Z., Tseng, P. K., Lin, I. N. and Cheng, H. F., Appl. Phys. Lett. 75, 2229 (1999).Google Scholar
20. Curtiss, L. A., Zapol, P., Sternberg, M., Redfern, P. C., Horner, D. A., and Gruen, D. M., Synthesis, Properties and Applications of Ultrananocrystalline Diamond, (NATO Sci. Series, Netherlands, 2005) 192, p. 3948.Google Scholar
21. Bar-Yam, Y. an Moustakas, T. D., Nature 342, 786 (1989).Google Scholar
22. Bernholc, J., Antonelli, A., Del Sole, T. M., Bar-Yam, Y., and Pantelides, S. T., Phys. Rev. Lett. 61, 2689 (1988).Google Scholar