Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:31:52.017Z Has data issue: false hasContentIssue false

The Role Played by Strain Fields, Dislocation Arrays, and Domain Boundaries During the Catalytic Synthesis of Carbon Nanotubes

Published online by Cambridge University Press:  01 February 2011

Ludovico Matteo Dell'Acqua-Bellavitis
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Engineering Science and Nanotechnology Center, 110 Eight Street,, Troy NY 12180-3590, Troy, NY, 12180-3590, United States, +1/518/2763011, +1/518/2719571
Jake D Ballard
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Materials Science and Engineering, United States
Robert Vajtai
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Materials Science and Engineering, United States
Pulickel M Ajayan
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Materials Science and Engineering, United States
Richard W Siegel
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Materials Science and Engineering, United States
Get access

Abstract

Ex-situ transmission electron microscopy (TEM) was performed on catalytically-grown multi-wall carbon nanotubes (MWCNTs), leading to the identification of two types of catalyst-nanotube wall interfaces – respectively characterized by a quasi-spherical, low aspect ratio particle closer to the nanotube root and by a tapered, high aspect ratio particle farther away from it. The nanotubes exhibit two distinct types of boundaries between crystalline domains with different orientations – twist and twin boundaries in correspondence with quasi-spherical particles and tilt boundaries in correspondence with the tapered particles. TEM evidence suggests that the domain boundaries maintain a rather steady position coupled to the catalytic particles, while the carbon atoms diffuse along the nanotube axis away from the particles. From these considerations, it is possible to conclude that the relative movement of the carbon atoms with respect to the dislocation lines comprising the nanotube domain boundary located at the catalyst-wall interface is a significant mechanism for nanotube crystal growth mainly driven by surface diffusion. The results are interpreted in light of the concurrence of base- and tip- growth for the catalytic synthesis of nanotubes dominated by surface diffusion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bower, C., Zhou, O., Zhu, W., Werder, D. J., Jin, S., Appl. Phys. Lett., 77, 2767 (2000).Google Scholar
2. Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegal, M. P., Provencio, P. N., Science, 282, 1105 (1998).Google Scholar
3. Dell'Acqua-Bellavitis, L.M., Kinetics for the synthesis reaction of aligned carbon nanotubes. A study based on in situ diffractography. M.S. Thesis - Materials science and engineering. 2004, Troy NY-USA: Rensselaer Polytechnic Institute.Google Scholar
4. Dell'Bellavitis, L. M. Ballard, J. D., Ajayan, P.M., Siegel, R.W., Nano Lett., 4, 1613 (2004).Google Scholar
5. Li, D-C., Dai, L., Huang, S., Mau, A. W. H., Wang, Z. L., Chem. Phys. Lett., 316, 349 (1999).Google Scholar
6. Fonseca, A., Hernadi, K., Piedigrosso, P., Colomer, J.-F., Mukhopadhyay, K., Doome, R., Lazarescu, S., Biro, L.P., Lambin, Ph., Thiry, P. A., Bernaerts, D., Nagy, J. B., Appl. Phys. A, 67, 11 (1998).Google Scholar
7. Sinnott, S. B., Andrews, R., Qian, D., Rao, A. M., Mao, Z., Dickey, E. C., Derbyshire, F., Chem. Phys. Lett., 315, 25 (1999).Google Scholar
8. Zhang, X., Cao, A., Wei, B., Li, Y., Wei, J., Xu, C., Wu, D., Chem. Phys. Lett., 362, 285 (2002).Google Scholar
9. Juang, Z. Y., Lai, J. F., Weng, C. H., Lee, J. H., Lai, H. J., Lai, T. S., Tsai, C. H., Diamond Relat. Mater., 13, 2140 (2004).Google Scholar
10. Perez-Cabero, M., Romeo, E., Royo, C., Monzon, A., Guerrero-Ruiz, A., Rodriguez-Ramos, I., J. Catal., 224, 197 (2004).Google Scholar
11. Chhowalla, M., Teo, K. B. K., Ducati, C., Rupesinghe, N. L., Amaratunga, G. A. J., Ferrari, A. C., Roy, D., Robertson, J., Milne, W. I., J. Appl. Phys., 90, 5308 (2001).Google Scholar
12. Charlier, J-C., Iijima, S., Topics Appl. Phys., 80, 55 (2001).Google Scholar
13. Liu, Z.-J., Che, R., Xu, Z., Peng, L.-M., Synth. Met., 128, 191 (2002).Google Scholar
14. Ma, X., Cai, Y., Li, X., Wen, S., Mat. Sci. Eng. A, 357, 308 (2003).Google Scholar
15. Ma, X., Cai, Y., Lun, N., Ao, Q., Li, S., Li, F., Wen, S., Mater. Lett., 57, 2879 (2003).Google Scholar
16. Jin-Phillipp, N. Y., Rühle, M., Phys. Rev. B, 70, 245421–1 (2004).Google Scholar
17. Cardin, D. J., Lay, A. K., Gilbert, A., J. Mater. Chem., 15, 403 (2005).Google Scholar
18. Helveg, S., Lopez-Cartes, C., Sehested, J., Hansen, P. L., Clausen, B. S., Rostrup-Nielsen, J. R., Abild-Pedersen, F., Nørskov, J. K., Nature, 427, 426 (2004).Google Scholar
19. Jung, Y. J., Wei, B., Vajtai, R., Ajayan, P. M., Nano Lett., 3, 561 (2003).Google Scholar
20. Bernholc, J., Brabec, C., Nardelli, M. Buongiorno, Maiti, A., Roland, C., Yakobson, B. I., Appl. Phys. A, 67, 39 (1998).Google Scholar
21. Li, Z., Dharap, P., Sharma, P., Nagarajaiah, S., Yakobson, B. I., J. Appl. Phys., 97, 074303–1 (2005).Google Scholar
22. Nazarov, A. A., Shenderova, O. A., Brenner, D. W., Phys. Rev. B, 61, 928 (2000).Google Scholar
23. Kuzumaki, T., Kitakata, S., Enomoto, K., Yasuhara, T., Ohtake, N., Mitsuda, Y., Carbon, 42, 2329 (2004).Google Scholar
24. Konya, Z., Zhu, J., Niesz, K., Mehn, D., Kiricsi, I., Carbon, 42, 2001 (2004).Google Scholar
25. Schaper, A. K., Hou, H., Greiner, A., Phillipp, F., J. Catal., 222, 250 (2004).Google Scholar
26. Falvo, M. R., Clary, G. J., Taylor, R. M. II, Chi, V., Brooks, F. P. Jr., Washburn, S., Superfine, R., Nature, 389, 582 (1997).Google Scholar
27. Burton, W. K., Cabrera, N., Frank, F. C., Phil. Trans. R. Soc. A, 243, 299 (1951).Google Scholar