Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:22:36.594Z Has data issue: false hasContentIssue false

Role of Transition Metal-Hydroxide (M-OHx , M=Mn, Fe, Ni, Co) Co-catalyst Loading : Efficiency and Stability of CdS Photoanode

Published online by Cambridge University Press:  24 April 2015

Alka Pareek
Affiliation:
Center for nanomaterials, ARCI, Balapur PO., Hyderabad, Telangana, India SEST, Hyderabad Central University, Hyderabad, Telangana, India.
Pradip Paik
Affiliation:
SEST, Hyderabad Central University, Hyderabad, Telangana, India.
Pramod H. Borse
Affiliation:
Center for nanomaterials, ARCI, Balapur PO., Hyderabad, Telangana, India
Get access

Abstract

In this work we have synthesized the colloidal particles of transition metal-hydroxide (M= Ni, Co, Mn, Fe) by a simple chemical precipitation method. The surface of spray deposited CdS thin films were modified using nano-colloids to utlize them as water oxidation catalysts (WOC) for the photoelectrochemical cell (PEC). A systematic comparison of the PEC performance of modified and unmodified film is carried out to understand the role of co-catalyst. Ni(OH)2 modification yields 3.4 times higher photocurrent density than bare CdS photoanode, and exhibits hydrogen-evolution rate of 600 μmol/hr. Fe(OH)2 modified film shows best stability of 8 hours as compared to the others.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fujishima, A. and Honda, K., Nature, 1972, 238, 37.CrossRefGoogle Scholar
Meissner, D., Memming, R. and Kastening, B., Chem Phys. Lett., 1986, 127, 5.CrossRefGoogle Scholar
Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q., Santori, E. A. and Lewis, N. S., Chem. Rev. 2010, 110, 6446.CrossRefGoogle Scholar
Kalayanasundaram, K., Borgarello, E.B., Duonghong, D. and Graetzel, M., Angew. Chem. Int. Ed. Engl., 1981, 20, 987.CrossRefGoogle Scholar
Wang, G., Ling, Y., Lu, X., Zhai, T., Qian, F., Tong, Y. and Li, Y., Nanoscale, 2013, 5, 4129.CrossRefGoogle ScholarPubMed
Li, J., Meng, F., Suri, S., Ding, W., Huang, F. and Wu, N., Chem. Comm., 2012, 48, 8213.CrossRefGoogle Scholar
Zhen, C., Wang, L., Liu, G., Lub, G. Q. and Chenga, H. M., Chem. Com., 2013, 49, 3019 CrossRefGoogle Scholar
Pareek, A., Dom, R., Borse, P. H., Int. J. Hydrogen Energy, 2013, 38, 36.CrossRefGoogle Scholar
Liao, M., Feng, J., Luo, W., Wang, Z., Zhang, J., Li, Z., Yu, T., and Zou, Z., Adv. Funct. Mater. 2012, 22, 3066.CrossRefGoogle Scholar
Pareek, A., Paik, P. and Borse, P.H., Langmuir, 2014, 30, 15540.CrossRefGoogle Scholar