Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T14:54:48.710Z Has data issue: false hasContentIssue false

Role of Thermal Expansion and Redistribution of Components on the Temperature Dependence of the Lattice Misfit in γ/γ' Superalloys

Published online by Cambridge University Press:  26 February 2011

Oleg Kontsevoi
Affiliation:
[email protected], Northwestern University, Physics & Astronomy, 2145 N. Sheridan Rd., Evanston, IL, 60208, United States, (847)491-8637, (847)491-5082
Yuri N. Gornostyrev
Affiliation:
[email protected], Northwestern University, Physics & Astronomy, 2145 N. Sheridan Rd., Evanston, IL, 60208, United States
Arthur J. Freeman
Affiliation:
[email protected], Northwestern University, Physics & Astronomy, 2145 N. Sheridan Rd., Evanston, IL, 60208, United States
Get access

Abstract

The relative role of thermal expansion and redistribution of alloy components in the temperature dependence of the lattice misfit in γ/γ' alloys is investigated on the basis of ab initio calculations. We show that in a wide temperature region up to approximately 0.6·Tmelt, the lattice misfit is determined by the difference in thermal expansion of γ and γ' phases and shows only a slight variation. For higher temperatures the redistribution of the major alloy components between the phases becomes a leading contribution to the lattice misfit.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Backman, D.G. and Williams, J.C., Science 255, 1082 (1992).Google Scholar
2. Fairbank, G.B., Humphreys, C.J., Kelly, A., and Jones, C.N., Intermetallics 8, 1091 (2000).Google Scholar
3. Yamabe, Y., Koizumi, Y., Murakami, H., Ro, Y., Maruko, T., and Harada, H., Scripta Mater. 35, 211 (1996).Google Scholar
4. Yamabe-Mitarai, Y., Koizumi, Y., Murakami, H., Ro, Y., Maruko, T., and Harada, H., Scripta Mater. 36, 393 (1997).Google Scholar
5. Yamabe-Mitarai, Y., Ro, Y., Maruko, T., and Harada, H., Metall. Mater. Trans. A 29, 537 (1998).Google Scholar
6. Mughrabi, H. and Tetzlaff, U., Adv. Eng. Mater. 2, 319 (2000).Google Scholar
7. Yamabe-Mitarai, Y., Yu, X., Gu, Y., Ro, Y., Nakazawa, S., Maruko, T., and Harada, H., in Creep and Fracture of Engineering Materials and Structures, edited by T., Sakuma and K., Yagi (Key Engineering Materials Series, 171, Trans Tech Publications, Zürich, 2000), pp. 625632.Google Scholar
8. Siebörger, D., Brehm, H., Wunderlich, F., Möller, D., and Glatzel, U., Metalkunde, Z. 92, 58 (2001).Google Scholar
9. Bruno, G., Schumacher, G., Pinto, H.C., and Schulze, C., Metal. Mater. Trans. A 34, 193 (2003).Google Scholar
10. Baroni, S., de Gironcoli, S., Dal Corso, A., and Gianozzi, P., Rev. Mod. Phys. 73, 515 (2001).Google Scholar
11. Khromov, K.Yu., Gornostyrev, Yu. N., Kontsevoi, O.Yu., Maksyutov, A.F., Freeman, A.J., Katsnelson, M.I., Lichtenstein, A.I., and Trefilov, A.V., Phys. Rev. B, submitted for publication.Google Scholar
12. Mishin, Y., Acta Mater. 52, 1451 (2004).Google Scholar
13. Wimmer, E., Krakauer, H., Weinert, M., and Freeman, A.J., Phys. Rev. B 24, 864 (1981).Google Scholar
14. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
15. The calculations of the phonon spectra were done using the PWSCF package, Baroni, S., de Gironcoli, S., Dal Corso, A., and Gianozzi, P., http://www.pwscf.orgGoogle Scholar
16. Xie, J., Chen, S.P., Brand, H.V., and Rabie, R.L., J. Phys.: Condens. Matter 12, 8953 (2000).Google Scholar
17. Mohan Rao, P.V., Suryanarayana, S.V., Murthy, K.S., and Naidu, S.V.N., J. Phys.: Condens. Matter 1, 5357 (1989).Google Scholar
18. Kirby, R.K., in American Institute of Physics Handbook (McGraw-Hill, New York, 1962) pp.464; H.P. Singh, Acta Cryst. A 24, 469 (1968); G.K. White and A.T. Pawlowicz, J. Low Temp. Phys. 2, 631 (1970).Google Scholar
19. Terada, Y., Ohkubo, K., Miura, S., Sanchez, J.M., and Mohri, T., Mater. Chem. Phys. 80, 385 (2003).Google Scholar
20. Moriya, T., Spin Fluctuations in Itinerant Electron Magnetism (Springer, Berlin, 1985).Google Scholar
21. Yousuf, M., Sahu, P.C., Jajoo, H.K., Radjagopalan, S., and Rajan, K.G., J. Phys. F: Met. Phys. 16, 373 (1986).Google Scholar
22. Massalski, T.B. (Ed.), Binary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1992).Google Scholar
23. Ardell, A.J., Acta Metall. 16, 511 (1968).Google Scholar
24. Eshelby, J.D., Solid St. Phys. 3, 79 (1956).Google Scholar