Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:47:37.176Z Has data issue: false hasContentIssue false

The Role of Sei in Lithium and Lithium Ion Batteries

Published online by Cambridge University Press:  15 February 2011

E. Peled
Affiliation:
School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
D. Golodnttsky
Affiliation:
School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
G. Ardel
Affiliation:
School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
C. Menachem
Affiliation:
School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
D. Bar Tow
Affiliation:
School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
V. Eshkenazy
Affiliation:
School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
Get access

Abstract

This paper presents and discusses fundamental processes taking place at the lithium and LixC6 electrode/electrolyte interphases and models for these interphases. We deal with both nonaqueous and polymer (dry and gel) electrolytes, graphitized and nongraphitized carbonaceous materials as anodes for Li-ion batteries. Each electrode/electrolyte combination has its own unique features and problems but there are some general phenomena common to all of them. Issues to be reviewed include SEI composition, morphology and formation reactions, graphite surface modifications including chemical bonded SEI and micro channels formation, electrode degradation processes, lithium deposition-dissolution and intercalation-deintercalation mechanisms, rate-determining steps (RDS), electrolyte and electrode parameters and conditions affecting the above mentioned processes. Technologyrelated issues are emphasized.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Gray, F.M., Solid Polymer Electrolytes Fundamental and Technological Applications, VCH (1991).Google Scholar
2 Polymer Electrolyte Reviews- 1, Macallum, J.R. and Vincent, C.A. Eds, Elsevier Applied Science, London (1987).Google Scholar
3 Steele, B.C.H., Lagos, G.E., Spurgens, P.C., Forseyth, C. and Foord, A.D., Solid State Ionics, 9/10, 391 (1983).Google Scholar
4 Fauteux, D., Solid State Ionics 17, 133 (1985).Google Scholar
5 Hiatani, M., Solid State Ionics 28–30, 1431 (1988).Google Scholar
6 Sequeira, C.A.C. and Hooper, A., Solid State Ionics 9/10, 1131 (1983).Google Scholar
7 Fauteux, D., Prud’homme, J. and Harvey, P.E., Solid State Ionics 28–30, 923 (1988).Google Scholar
8 Bonino, F., Scrosati, B., Selvaggi, A., Evans, J. and Vincent, C.A., J. Power Sources 18, 75 (1986).Google Scholar
9 Croce, F. and Scrosati, B., J. Power Sources 43–44, 9 (1993).Google Scholar
10 Vincent, C.A., Prog. Solid State Chem. 17, 145 (1987).Google Scholar
11 Peled, E., J. Electrochem. Soc. 126, 2047 (1979).Google Scholar
12 Peled, E. in “Lithium Batteries”, Gabano, J.P., Ed. AP (1983).Google Scholar
13 Peled, E., Golodnitsky, D., Menachem, C., Ardel, G. and Lavi, Y., Ab. No. 504, Vol. 93–2, The Electrochemical Soc. Fall Meeting, New Orleans, Oct. (1993).Google Scholar
14 Nagasubramanian, G., Attia, A.I., Halpert, G. and Peled, E., Solid State Ionics 67, 51 (1993).Google Scholar
15 Fong, R., Van Sacken, U. and Dahn, J.R.. J. Electrochem. Soc. 137, 2009 (1990).Google Scholar
16 Fauteux, D., J. Electrochem. Soc. 135 ,2231 (1988).Google Scholar
17 Wieczorek, W., Such, K., Wycislik, H. and Plocharski, J., Solid State Ionics, 36, 255 (1989).Google Scholar
18 Peled, E., Golodnitsky, D., Ardel, G., Lang, J. and Lavi, Y., Proceeedings of the 11th Int. Sem.on Primary and Secondary Battery Technology and Applications, Wolsky, S.P., Marincic, N., Eds. Florida, March (1994).Google Scholar
19 Peled, E., Golodnitsky, D., Menachem, C., Ardel, G. 7th International Meeting on Lithium Batteries, Boston, P. 21, Ab. Vol, May, 1994.Google Scholar
20 Peled, E., Golodnitsky, D., Ardel, G. and Eshkenazy, V.. J. Electrochem. Acta, submitted.Google Scholar
21 Kanno, R., Kawamoto, Y., Takeda, Y., Ohashi, S., Imanishi, N. and Yamamoto, Y.. J. Electrochem. Soc. 139, 3397 (1992).Google Scholar
22 Peled, E., Bar-Tow, D., Melman, A., Gerenrot, E. and Lavi, Y.. Proceedings volume 94, Electrochem. Soc. Fall Metting, New Orleans 10/1993.Google Scholar
23 West, K., Jacobsen, J., Zachau-Christiansen, B. and Atlung, S., Electrochimica Acta, 28, 97 (1983).Google Scholar
24 Dahn, J.R. and Haering, R.R., Solid State Ionics, 2, 19 (1981).Google Scholar
25 Dahn, J.R. and McKinnon, W.R., J. Electrochem. Soc. 131, 1823 (1984).Google Scholar
26 Dahn, J.R., Physical Review B, 44, 9170 (1991).Google Scholar
27 Ohzuka, T., Iwakoshi, Y. and Sawai, K., J. Electrochem. Soc. 140, 2490 (1993).Google Scholar
28 Zaghib, K., Tatsumi, K., Abe, H., Sakaebi, H., Higuchi, S., Ohsaki, T. and Sawada, Y., Abs. 581, ECS, Volume 94–1, May (1994).Google Scholar
29 Peled, E., Proceedings of the ECS, Fall Meeting, Miami, Oct. 1994 (to be published).Google Scholar
30 Takamura, T., Kikuchi, M. and Ikozawa, Y., Abs. No. 97, ECS, Fall Meeting, Miami, Oct. 1994.Google Scholar
31 Chu, X., Smyrl, W.H. and Schmidt, L.D., ibid, Abs. No. 95.Google Scholar
32 Pierson, H.P., Handbook of Carbon, Graphite, Diamond and Fullerenes, Noyes Publications (1993).Google Scholar
33 Peled, E., Menachem, C., Bar-Tow, D. and Melman, A., J. Electrochem. Soc. Submitted.Google Scholar
34 Xie, L., Fouchard, D. and Megahed, S., Ibid.Google Scholar