Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:56:41.496Z Has data issue: false hasContentIssue false

Role of Power Density, U.V. Light and Hydrogen Dilution on Transition of Amorphous to Microcrystalline Structure on Films Produced by a TCDDC System

Published online by Cambridge University Press:  26 February 2011

M. Vieira
Affiliation:
Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa/UNINOVA/Centro de Física Molecular das Universidades de Lisboa (INIC), PORTUGAL.
R. Martins
Affiliation:
Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa/UNINOVA/Centro de Física Molecular das Universidades de Lisboa (INIC), PORTUGAL.
A. Maçarico
Affiliation:
Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa/UNINOVA/Centro de Física Molecular das Universidades de Lisboa (INIC), PORTUGAL.
I. Baía
Affiliation:
Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa/UNINOVA/Centro de Física Molecular das Universidades de Lisboa (INIC), PORTUGAL.
F. Soares
Affiliation:
Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa/UNINOVA/Centro de Física Molecular das Universidades de Lisboa (INIC), PORTUGAL.
L. Guimarães.
Affiliation:
Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa/UNINOVA/Centro de Física Molecular das Universidades de Lisboa (INIC), PORTUGAL.
Get access

Abstract

The role of deposition condition on content and bond configurations of a–Si:H/μc–Si:H and a–Si:C:H doped films were investigated through IR spectra and correlated with transport properties. The microstructure, morphology, chemical composition and electro-optical properties were inferred from normal X–ray power diffraction, scanning electron microscopy (SEM), Rutherford Back Scattering (RBS), dark conductivity, visible and IR measurements.

The films under investigation were prepared in a Two Consecutive Decomposition and Deposition Chamber (TCDDC[1]) system under various deposition conditions such as: power density, dp; H2 partial pressure; substrate temperature, Ts; electromagnetic static fields (ξG and IB) with or without U.V. light assisting the process.Transition of a–Si:H to μc-Si:H (doped) films is accomplished by structure variation on bond configurations, hydrogen contents, CH, and transport properties. When oxygen is present during the deposition, films deposited with U.V. light assisting the process have O2 incorporated as Si=O while at high dp levels (without U.V. light) O2 appears in the matrix as Si–O bonds. Such behaviour is explained by changes on bond configurations and on the way how hydrogen is attached in the network.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1– Martins, R. et al. Proc. of 5th E.C. Phot. Solar En. (Athens), 778–783 (1983).Google Scholar
2– Hamakawa, Y.. “Current Topics in Photovoltaics” – ed. by Academic Press (1985).Google Scholar
3– Spear, W. E. & Comber, P. G. Le. Solid State Commun. 17, 1193 (1975).CrossRefGoogle Scholar
4– Madan, A. et al. J. of Non-Crystalline Solids 20, 239 (1976).CrossRefGoogle Scholar
5– Yamada, A., Konagai, M. and Takahashi, K.. J. Appl. Phys. 24, 1586 (1985).Google Scholar
6– Martins, R. et al. J. of Non-Crystalline Solids 97&98, 13991402 (1987).Google Scholar
7– Guimarães, L. and Martins, R.. EEC private contractors meeting (Hamburg–1987).Google Scholar
8– Lucovsky, G.. Journal de Physique C4, Tome 42 (1981).Google Scholar
9– Pliskin, W.A.. J. Vac. Sc. Techn. 14, 1064 (1977).CrossRefGoogle Scholar
10– Tawada, Y.. Proc. of Inter. Soc. for Optical Eng. Conf. 706 (Cambridge–1974).Google Scholar