Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:18:06.595Z Has data issue: false hasContentIssue false

Role of Inter-Dopant Interactions on the Diffusion of Li and Na Atoms in Bulk Si Anodes

Published online by Cambridge University Press:  17 June 2013

Teck L. Tan
Affiliation:
Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
Oleksandr I. Malyi
Affiliation:
Department of Mechanical Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1, 117576, Singapore
Fleur Legrain
Affiliation:
Department of Mechanical Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1, 117576, Singapore
Sergei Manzhos*
Affiliation:
Department of Mechanical Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1, 117576, Singapore
Get access

Abstract

We explore, via density functional theory (DFT) calculations, the effect on the barrier height for Li and Na diffusion in bulk Si of the presence of an extra Li/Na atom at the neighboring tetrahedral (T) or hexagonal (H) interstitial site. For both neighboring sites, the lowest diffusion barrier height is reduced, although the magnitude of the reduction depends on the inter-atomic distance between the 2 Li/Na atoms. We further calculate the effective interaction between the 2 atoms and show that it is a strong predictor of diffusion barrier heights for both Li-Si and Na-Si systems. Importantly, the correlation between inter-dopant interaction and barrier height may be used in future work to predict the diffusion barriers at higher concentration of inserted atoms.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Thackeray, M. M., Wolverton, C. and Isaacs, E. D., Energy Environ. Sci. 5, 7854 (2012).CrossRefGoogle Scholar
Wu, H. and Cui, Y., Nano Today 7, 414 (2012).CrossRefGoogle Scholar
Palomares, V., Serras, P., Villaluenga, I., Hueso, K. B., Carretero-Gonzalez, J. and Rojo, T., Energy Environ. Sci. 5 (3), 5884 (2012).CrossRefGoogle Scholar
Chevrier, V. L. and Ceder, G., J. Electrochem. Soc. 158, A1011 (2011).CrossRefGoogle Scholar
Tran, T. T. and Obrovac, , J. Electrochem. Soc. 158, A1411 (2011).CrossRefGoogle Scholar
Malyi, O. I., Tan, T. L. and Manzhos, S., Appl. Phys. Express 6, 027301 (2013).CrossRefGoogle Scholar
Malyi, O. I., Tan, T. L. and Manzhos, S., J. Power Sources 233, 341 (2013).CrossRefGoogle Scholar
Mortazavi, M., Deng, J., Shenoy, V. B. and Medhekar, N. V., J. Power Sources 225, 207 (2013).CrossRefGoogle Scholar
Chou, C.-Y., Kim, H. and Hwang, G. S., J. Phys. Chem. C 115, 20018 (2011).CrossRefGoogle Scholar
Zhao, K., Wang, W. L., Gregoire, J., Pharr, M., Suo, Z., Vlassak, J. J. and Kaxiras, E., Nano Lett. 11, 2962 (2011).CrossRefGoogle Scholar
Kim, H., Kweon, K. E., Chou, C.-Y., Ekerdt, J. G. and Hwang, G. S., J. Phys. Chem. C 114, 17942 (2010).CrossRefGoogle Scholar
Wan, W., Zhang, Q., Cui, Y. and Wang, E., J. Phys.: Condens. Matter 22, 415501 (2010).Google Scholar
Jung, S. C. and Han, Y.-K., Phys. Chem. Chem. Phys. 13, 21282 (2011).CrossRefGoogle Scholar
Malyi, O. I., Kulish, V.V., Tan, T. L. and Manzhos, S., Nano Energy, DOI: 10.1016/j.nanoen.2013.04.007.CrossRefGoogle Scholar
Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
Kresse, G. and Furthmuller, J., Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
Kresse, G. and Furthmuller, J., Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
Perdew, J. P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).CrossRefGoogle Scholar
Blochl, P. E., Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
Henkelman, G., Uberuaga, B. P. and Jonsson, H., J. Chem. Phys. 113, 9901 (2000).CrossRefGoogle Scholar