Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T06:49:04.808Z Has data issue: false hasContentIssue false

The Role of Hydrogen in Silicon Microcrystallization

Published online by Cambridge University Press:  21 February 2011

S. Wagner
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544
S.H. Wolff
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544
J.M. Gibson
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

We report and interpret two groups of experiments on the role that hydrogen plays in the formation of silicon microcrystals. We show that the growth of singlecrystal Si by molecular beam epitaxy at 475°C is disrupted by H2, which induces the formation of microcrystals. In crystallization experiments of non-hydrogenated a-Si and of hydrogenated a-Si:H on a hot stage in a transmission electron microscope, hydrogen facilitates the nucleation of crystallites. We explain our observations with a substantial reduction of the grain boundary energy by hydrogen.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Veprek, S., Iqbal, Z., and Sarott, F.A., Phil. Mag., B,45, 127 (1982).Google Scholar
2. Veprek, S., Mat. Res. Soc., Symp. Proc. Vol. 164.Google Scholar
3. Tanaka, K. and Matsuda, A., Mat. Sci. Repts., 2, 139 (1987).Google Scholar
4. Matsuda, A. and Goto, T., Mat. Res. Soc. Symp. Proc. Vol. 164.Google Scholar
5. Tsai, C.C., Knights, J.C., Chang, C., and Wacker, B., J. Appl. Phys., 59, 2998 (1983).Google Scholar
6. Tsai, C.C., Anderson, G.B., Thompson, R., and Wacker, B., 13th 1CALS, to be published in J. Non-Cryst. Solids.Google Scholar
7. Shimizu, I., 13th 1CALS, to be published in J. Non-Cryst. Solids.Google Scholar
8. Nguyen, T.N., Harame, D.L., Stork, J.M.C., LeGomes, F.K., and Meyerson, B.S., Proc. Int. Electron Devices Meeting, Los Angeles, Dec. 7-10, 1986, p. 304.Google Scholar
9. Akhtar, M., Dalal, V.L., Ramaprasad, K.R., Gau, S., and Cambridge, A.J., Appl. Phys. Lett., 41, 1146 (1982).Google Scholar
10. Schulze, G. and Henzler, M., Surf. Sci., 134, 336 (1983).Google Scholar
11. Wolff, S.H., Wagner, S., Gibson, J.M., Loretto, D., Robinson, I.K., and Bean, J.C., unpublished data.Google Scholar
12. Wolff, S.H., Wagner, S., Bean, J.C., Hull, R., and Gibson, J.M., Appl. Phys. Lett., 55, 2017 (1989).Google Scholar
13. Bean, J.C. and Sadowski, E.A., J. Vac. Sci. Technol., 20, 137 (1982).Google Scholar
14. Chabal, Y.J. and Patel, C.K.N., Phys. Rev. Lett., 53, 210 (1984) and 53, 1771 (1984).Google Scholar
15. Boyce, J.B., Ready, S.E., Stutzmann, M., and Norberg, R.E., 13th 1CALS, to be published in J. Non-Cryst. Solids.Google Scholar
16. Chou, S.F., Schwarz, R., Okada, Y., Slobodin, D., and Wagner, S., Mat. Res. Soc. Symp. Proc., 95, 165 (1987).Google Scholar
17. Buda, F., Chiarotti, G.L., Car, R., and Parinello, M., Phys. Rev. Lett., 63, 294 (1989).Google Scholar
18. Chiarotti, G.L., Buda, F., Car, R., and Parinello, M., Mat. Res. Soc. Symp. Proc. Vol. 163.Google Scholar