No CrossRef data available.
Article contents
The Role of Hydrogen in Laser Deposition of Diamond-Like Carbon
Published online by Cambridge University Press: 28 February 2011
Abstract
Thin films have been grown on Si (100) substrates by pulsed laser evaporation of graphite using both IR and UV radiation. The character of the resulting film is found to be independent of the presence of H°. Diamond-like films are found to be a result of low (RT) temperature deposition of the higher energy incident particles of the UV (versus IR) laser ablation process.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1992
References
REFERENCES
[2]
Cuomo, J.J., Pappas, D.L., Doyle, J.P., Bruley, J., and Saenger, K.L., to be published in the Proceedings of TMS 1991.Google Scholar
[3]
Cuomo, J.J., Pappas, D.L., Bruley, J., Doyle, J.P., and Saenger, K.L., submitted to the Journal of Applied Physics (1/91).Google Scholar
[4]
Cuomo, J.J., Bruley, J., Doyle, J.P., Pappas, D.L., Saenger, K.L., Liu, J.C., and Batson, P.E., submitted to the Journal of Materials Research 1991.Google Scholar
[6]
Krishnaswamy, J., Rengan, A., Srivatsa, A., Narayan, J., Cong, Y., Collins, R., and Vedam, K., Mat. Res. Soc. Symp. Proc, Vol 129, (1989), p. 219.Google Scholar
[7]
Krishnaswamy, J., Rengan, A., and Narayan, J., Mat. Res. Soc. Symp. Proc, Vol 129, (1989) p. 106.Google Scholar
[8]
Sato, T., Furuno, S., Iguchi, S., and Hanabusa, M., Jpn. J. Appl. Phys.
26, (1987).Google Scholar
[9]
Rengan, A., Srivatsa, A.R., Krishnaswamy, J., Narayan, J., Mat. Res, Soc. Symp., Vol 129, (1989) p. 456.Google Scholar
[10]
Krishnaswamy, J., Rengan, A., Narayan, J., Vedam, K., and McHargue, C.J., Appl. Phys. Lett.
54, 2455 (1989).Google Scholar
[11]
Danvaloo, F., Juengerman, E.M., Jander, D.R., Lee, T.J. and Collins, C.B., J. Appl. Phys.
67, 2081 (1990).Google Scholar
[12]
Martin, J.A., Vazquez, L., Bernard, P., Comin, F. and Ferrer, S., Appl. Phys. Lett.
57 (1990).Google Scholar
[13]
Collins, C.B., Danvaloo, F., Juengerman, E.M., Jander, D.R., and Lee, T.J., SPIE Vol 1146, Diamond Optics II, (1989) p. 37.Google Scholar
[14]
Pivin, J.C., Spirckel, M., Allouard, M., and Rautureau, G., Appl. Phys. Lett., 57, 2657 (1990).Google Scholar
[15]
Collins, C.B., Danvaloo, F., Juengerman, E.M., Osborn, W.R., and Jander, D.R., Appl. Phys. Lett.
54, 316 (1989).Google Scholar
[16]
Wagal, S.S., Juengerman, E.M., and Collins, C.B., Appl. Phys. Lett.
53, 187 (1988).Google Scholar
[18]
Dejaguin, B.V. and Fedoseev, D.V., Growth of Diamond and Graphite from the Gas Phase (in Russian), Nanka, Moscow (1977).Google Scholar
[19]
Badzian, A.R., Somonion, B., Badzian, T., Messier, R., Spear, K. and Roy, R., Proc. Of SPIE Conf.
683: 127 (1986).Google Scholar
[20]
Badzian, A.R. and Devries, R.C., Crystallization of Diamond from the Gas Phase: Part 1, Mat. Res. Bull., Vol. 23, pp. 385–400, (1988).Google Scholar