Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T23:44:25.487Z Has data issue: false hasContentIssue false

The Role of Hydrogen in Current-Induced Degradation of GaAs/AlGaAs Heterojunction Bipolar Transistors

Published online by Cambridge University Press:  22 February 2011

F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974 Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
C. R. Abernathy
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
S. N. G. Chu
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. R. Lothian
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974 Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Carbon-doped base GaAs/AlGaAs HBTs display current-induced decreases in dc gain which are correlated with the amount of hydrogen incorporated in the base layer during growth by Metalorganic Molecular Beam Epitaxy (MOMBE). During device operation, minority carrier injection induced debonding of hydrogen from neutral C-H complexes leads to an increase in effective base doping level and therefore to a decrease in gain. Post-growth in-situ or ex-situ annealing eliminates this effect by breaking up the C-H complexes. Properly designed HBTs are stable even for very high collector current densities (105 A · cm−2)

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kim, M., Bayraktaroglu, B. and Gupta, A., in HEMTS and HBTs: Devices Fabrication and Circuits, ed. Ali, F. and Gupta, A. (Artech House, Boston, 1991) pp. 253369.Google Scholar
2. Hafizi, M. E., Pawlowicz, L. M., Tran, L. T., Umemoto, D. K., Streit, D. C., Oki, A. K., Kim, M. E. and Yen, K. H., GaAs IC-Symp., New Orleans 1990 (IEEE, NY 1990) p.329.Google Scholar
3. Nakajima, O., Ito, H., Nittono, T. and Nagata, K., IEDM Tech. Dig., San Francisco 1990 (IEEE, NY, 1990), p. 673.Google Scholar
4. Nakajime, O., Ito, H., Nittono, T. and Nagata, K., Jpn. J. Appl. Phys. 31 2343 (1992).CrossRefGoogle Scholar
5. Mochizuki, K., Isomae, S., Masuda, H., Tanoue, T. and Kusano, C., Jpn. J. Appl. Phys. 31 751 (1992).CrossRefGoogle Scholar
6. Ren, F., Fullowan, T. R., Lothian, J., Wisk, P. W., Abernathy, C. R., Kopf, R. F., Emerson, A. B., Downey, S. W. and Pearton, S. J., Appl. Phys. Lett. 59 3613 (1991).CrossRefGoogle Scholar
7. Tanaka, S., Shimawaki, H., Kasuhara, K. and Honjo, K., IEEE Trans. Electron. Dev. ED 40 1194 (1993).CrossRefGoogle Scholar
8. Streit, D. C., Oki, A. K., Umemoto, D. K., Velebir, J. R., Stolt, K. S., Yamada, F. M., Saito, M., Hafizi, M. E., Bui, S. and Tran, L. T., IEEE Electron. Dev. Lett. EDL12 471 (1991).CrossRefGoogle Scholar
9. Jourdan, N., Alexandre, F., Dubon-Chevallier, C., Dangla, J. and Gao, Y., IEEE Trans. Electron. Dev. 39 767 (1992).CrossRefGoogle Scholar
10. Chin, A., Yang, L.-W., Martin, P. A., Nordheden, K. J., Ballingall, J. M., Yu, T. H. and P. Chao, C., J. Vac. Sci. Technol. B 11 972 (1993).CrossRefGoogle Scholar
11. Uematsu, M. and Wada, K., Appl. Phys. Lett. 60 1612 (1992).CrossRefGoogle Scholar
12. Tan, T. Y. and Gosele, U., Mat. Sci. Eng. B1 47 (1988).CrossRefGoogle Scholar
13. Sugahara, H., Nagano, J., Nittano, T. and Ogawa, K., GaAs IC Symp. 1993 (IEEE, NY 1993) pp. 115118.CrossRefGoogle Scholar
14. Donzelli, G. and Paccagnella, A., IEEE Trans. Electron. Dev. ED 34 957 (1987).CrossRefGoogle Scholar
15. Fukui, H., Wemple, S. H., Irvin, J. C., Niehaus, W. C., Hwang, J. C. M., Cox, J. M., Schlosser, W. O. and DiLorenzo, J. V., IEEE Trans. Electron. Dev. ED 29 395 (1982).CrossRefGoogle Scholar
16. Dumas, J. M., Lecrosnier, D. and Bresse, J. F., IEEE Electron. Dev. Lett. EDL 6 192 (1985).CrossRefGoogle Scholar
17. Tiwari, S., Eastman, L. F. and Rathburn, C., IEEE Trans. Electron. Dev. ED 27 1045 (1980).CrossRefGoogle Scholar
18. Abernathy, C. R., Mat. Res. Soc. Symp. Proc. 300 3 (1993).CrossRefGoogle Scholar
19. Ren, F., Fullowan, T. R., Abernathy, C. R., Pearton, S. J., Smith, P. R., Kopf, R. F., Laskowski, E. J. and Lothian, J. R., Electron. Lett. 27 1054 (1991).CrossRefGoogle Scholar
20.A detailed discussion of the hydrogen passivation of C acceptors in GaAs device structures can be found in the chapters by Stockman, S. A. and Stillman, G. E., and Stavola, M. in Hydrogen in Compound Semiconductors, ed. Pearton, S. J. (Trans Tech, Zurich, 1994).Google Scholar
21.See for example: Hydrogen in Crystalline Semiconductors, Pearton, S. J., Corbett, J. W. and Stavola, M. (Springer-Verlag, Heidelberg 1992).CrossRefGoogle Scholar
22. Seager, C. H. and Anderson, R. A., Appl. Phys. Lett. 63 1531 (1993).CrossRefGoogle Scholar
23. Pearton, S. J., Ren, F., Chu, S. N. G., Abernathy, C. R., Hobson, W. S. and Elliman, R. G., J. Appl. Phys. 74 6580 (1993).CrossRefGoogle Scholar
24. Neethling, J. H. and Snyman, H. C., J. Appl. Phys. 60 941 (1986).CrossRefGoogle Scholar
25. Sadana, D. K., Zavada, J. M., Jenkinson, H. A. and Sands, T., Appl. Phys. Lett. 47 691 (1985).CrossRefGoogle Scholar
26. Hobson, W. S. in Hydrogen in Compound Semiconductors, ed. Pearton, S. J. (Trans Tech, Zurich, 1994).Google Scholar
27. Seaward, K. L., Appl. Phys. Lett. 61 3003 (1992).CrossRefGoogle Scholar
28. Nakajima, O., Nagata, K. and Makimura, T., Jpn. J. Appl. Phys. 31 L1704 (1992).CrossRefGoogle Scholar
29. Ren, F., in Hydrogen in Compound Semiconductors, ed. Pearton, S. J. (Trans Tech, Zurich, 1994).Google Scholar
30. Gopi, P. K., Li, G. P., Senek, G. J., Dunkley, J., Hannaman, D., Patterson, J. and Willard, S., Appl. Phys. Lett. 63 1237 (1993).CrossRefGoogle Scholar