Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T18:56:02.792Z Has data issue: false hasContentIssue false

Role Of Hydrogen And Hydrogen Complexes In Doping Of Gan

Published online by Cambridge University Press:  15 February 2011

Jörg Neugebauer
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304 Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4–6, D-14195 Berlin, Germany
Chris G. Van de wallei
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304
Get access

Abstract

We have calculated electronic structure, energetics and migration for hydrogen and hydrogen complexes in GaN employing state-of-the-art first-principles calculations. Using these results in combination with previous detailed investigations about native defects we have calculated the concentration of hydrogen and dopants for different growth conditions. Our results reveal a fundamental difference in the behavior of hydrogen in p-type and n-type material. In particular, we explain why hydrogen has little effect on donor impurities and why H concentrations are low in n-type GaN. We discuss why hydrogen is beneficial for acceptor incorporation in GaN, and identify the limitations of this process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Nakamura, S., Iwasa, N., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 31, 1258 (1992).Google Scholar
[2] Van Vechten, J. A., Zook, J. D., Hornig, R. D., and Goldenberg, B., Jpn. J. Appl. Phys. 31, 3662 (1992).Google Scholar
[3] Neugebauer, J. and Van de Walle, C. G., Phys. Rev. Lett. 75, 4452 (1995).Google Scholar
[4] Neugebauer, J. and Van de Walle, C. G., Proc. Mater. Res. Soc. Symp. 339, 687 (1994).Google Scholar
[5] Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991).Google Scholar
[6] Stumpf, R. and Scheffier, M., Comp. Phys. Commun. 79, 447 (1994).Google Scholar
[7] Neugebauer, J. and Van de Walle, C. G., Phys. Rev. B 50, 8067 (1994).Google Scholar
[8] Neugebauer, J. and Van de Walle, C. G., Proc. Mater. Res. Soc. Symp. 408 (1996).Google Scholar
[9] Akasaki, I., Amano, H., Kito, M., and Hiramatsu, K., J. Lumin. 48&49, 666 (1991).Google Scholar
[10] Molnar, R. J., Lei, T., and Moustakas, T. D., Proc. Mater. Res. Soc. Symp. 281, 753 (1993).Google Scholar
[11] Lin, M. E., Xue, C., Zhou, G. L., Greene, J. E., and Morkoc, H., Appl. Phys. Lett. 63, 932 (1993).Google Scholar
[12] Strictly speaking, this assumption is valid only if we ignore free carriers, a reasonable approximation if the Fermi level is far enough from the valence-band edge.Google Scholar
[13] Neugebauer, J. and Van de Walle, C. G., Appl. Phys. Lett. 68, 1829 (1996).Google Scholar
[14] Götz, W., Johnson, N., Walker, J., Bour, D. P., Amano, H., and Akasaki, I., Appl. Phys. Lett. 67, 2666 (1995).Google Scholar
[15] Lester, S. D., Ponce, F. A., Craford, M. G., and Steigerwald, D. A., Appl. Phys. Lett. 66, 1249 (1994).Google Scholar