Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:56:09.400Z Has data issue: false hasContentIssue false

Role of Fluorite Formation in Orientation Selection in Sol-Gel Derived Pb(Zr,Ti)O3 Films on Pt Electrode Layers

Published online by Cambridge University Press:  17 March 2011

G. J. Norga
Affiliation:
IMEC vzw, Kapeldreef 75, B-3001 Leuven, Belgium
L. Fè
Affiliation:
IMEC vzw, Kapeldreef 75, B-3001 Leuven, Belgium
F. Vasiliu
Affiliation:
National Institute of Materials Physics, PO Box MG-7, R-76900, Bucharest-Magurele, Romania
D. J. Wouters
Affiliation:
IMEC vzw, Kapeldreef 75, B-3001 Leuven, Belgium
O. Van der Biest
Affiliation:
KU Leuven, MTM Department, Kasteelpark 44, B-3001 Leuven, Belgium
Get access

Abstract

We present evidence that the microstructure of the metastable fluorite phase Pb2(Zr,Ti)2O6, which forms during the pyrolysis treatment of sol-gel PZT layers by homogeneous nucleation throughout the film, has a larger impact on orientation selection than has previously been realized. Elaborate TEM studies demonstrate that by varying the pyrolysis time, temperature and duration, the crystallinity of the transient fluorite phase can be greatly influenced. Pyrolysis at 350°C leads to the formation of a well crystallized fluorite phase with a cubic structure (Fd3m space group) and a= 10.5-10.6 Å. Rapid crystallization of the transient fluorite phase is attributed to the low oxygen partial pressure conditions, prevailing during burnoff of acetate groups originating from the lead starting compound. A possible connection between the fluorite formation kinetics and orientation selection in the layers is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Tani, T., Xu, Z., Payne, D.A., Mater. Res. Symp. Proc. 310, 295 (1993).Google Scholar
[2] Chen, S., Chen, I., J. Am. Ceram. Soc. 77, 2332 (1994)Google Scholar
[3] Huang, Z., Zhang, Q., Whatmore, R. W., J. Appl. Phys. 86 (3), 1662 (1999).Google Scholar
[4] , L., Norga, G. J., Maes, H. E. and Maes, G., J. Mater. Res.,16, 2499(2001)Google Scholar
[5] , L., Ph. D. Thesis, October 2001, KU Leuven.Google Scholar
[6] , L., Vasiliu, F., Norga, G. J., Wouters, D. J. and Biest, O. Van der, Key Eng. Mater., Vols. 206–213, 1259 (2002)Google Scholar
[7] Norga, G. J., Vasiliu, F., , L., Wouters, D. J. and Biest, O. Van der, submitted to J. Mater. Res. (2002).Google Scholar
[8] Nouwen, R., Mullens, J., Franco, D., Yperman, J. and Poucke, L. C. Van, Vibrational Spectroscopy, 10, 291(1996).Google Scholar
[9] Wouters, D. J., Willems, G. J., Maes, H. E., Integr. Ferroelectr., 15, 79 (1997).Google Scholar
[10] Elvers, B., Hofmann, H.. “Ullmann's Encyclopedia of industrial chemistryB5 VCH Weinheim, 455 (1994).Google Scholar
[11] Wilkinson, A. P., Speck, J. S., Cheetham, A. K., Natarajan, S. and Thomas, J. M., Chem. Mater., 6, 750 (1994).Google Scholar
[12] Seifert, A., Lange, F. F. and Speck, J. S., J. Am. Ceram. Soc., 76, 443 (1993).Google Scholar
[13] Lakeman, C. D. E., Xu, Z. and Payne, D. A., J. Mater. Res., 10, 2042 (1995).Google Scholar
[14] Brooks, K. G., Reaney, I. M., Klissurska, R., Huang, Y., Bursill, L. and Setter, N., J. Mater. Res. 9, 2540 (1994).Google Scholar