Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:19:38.226Z Has data issue: false hasContentIssue false

The Role of Defects in Carbon Nanostructures Probed through Ion Implantation and Electrochemistry

Published online by Cambridge University Press:  01 February 2011

Mark Hoefer
Affiliation:
[email protected]@ucsd.edu, University of California, San Diego, Materials Science Program, Department of Mechanical Engineering, La Jolla, California, United States
Jeffrey Nichols
Affiliation:
[email protected], University of California, San Diego, Materials Science Program, Department of Mechanical Engineering, La Jolla, California, United States
Prabhakar Bandaru
Affiliation:
[email protected], University of California, San Diego, Materials Science Program, Department of Mechanical Engineering, La Jolla, California, United States
Get access

Abstract

As carbon nanotubes (CNTs) inevitably contain defects, an understanding of their effect on the electrochemical behavior is crucial. We consider, through Cyclic Voltammetry and Raman Spectroscopy, the influence of both intrinsic and extrinsically introduced defects. Bamboo and hollow multi-walled carbon nanotube morphologies provided examples of the former while the controlled addition of Argon and Hydrogen ions was used for studying extrinsic defects. We show that the electrocatalytic response of the hollow type CNTs can be tailored significantly, while bamboo type CNTs have innately high reactive site densities and are less amenable to modification. Argon irradiation also differs greatly from that of Hydrogen irradiation. CNT irradiation with Argon appears to positively charge CNTs, while Hydrogen irradiation neutralizes defects further allowing for the tuning of CNT defect density. The work has implications in the design of nanotube and nanowire based chemical sensors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nugent, J. M., Santhanam, K.S.V., Rubio, A., and Ajayan, P.M., Nanolett., 1, 8791 (2001).Google Scholar
2. Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A., Science, 297, 787 (2002).Google Scholar
3. Zhao, Q., Gan, Z., and Zhuang, Q., Electroanalysis, 14, 16091613 (2002).Google Scholar
4. Banks, C.; Moore, R.; Davies, T.; Compton, R., Chem. Comm., 16, 18041805 (2004).Google Scholar
5. Banks, C. E., Davies, T.J., Wildgoose, G.G., and Compton, R.G., Chem. Comm., 7, 829841 (2005).Google Scholar
6. Chou, A. B., T., , Singh, N.; Gooding, J., Chem. Comm., 7, 842844 (2005).Google Scholar
7. Wang, J., Kawde, A.; Jan, M. R., Biosensors and Bioelectronics, 20, 9951000 (2004).10.1016/j.bios.2004.06.016Google Scholar
8. Zeng, Y. L.; Huang, Y. F., Jiang, J. H.; Zhang, X. B.; Tang, C. R.; Shen, G. L.; Yu, R. Q., Electrochem. Comm., 9, 185190 (2007).10.1016/j.elecom.2006.08.052Google Scholar
9. Strano, M. S., Dyke, C. A.; Ursey, M. L.; Barone, P. W.; Allen, M. J.; Shan, H.; Kittrell, C., Hauge, R. H.; Tour, J. M.; Smalley, R. E., Science, 301, 15191522 (2003).Google Scholar
10. Frackowiak, E., Metenier, K., Bertagna, V., and Beguin, F., Appl. Phys. Lett., 77, 24212423 (2000).Google Scholar
11. Wang, J., Sun, X.; Cai, X.; Lei, Y.; Song, L.; Xie, S., Electrochem. and Solid-State Lett., 10, J58–J60 (2007).Google Scholar
12. Bard, A. J., Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications. 2 ed.; John Wiley: New York, 2001.Google Scholar
13. Deck, C. P., Vecchio, K., Carbon, 43, 26082617 (2005).Google Scholar
14. Nichols, J., Deck, C. P.; Saito, H.; Bandaru, P. R., J. Appl. Phys., 102, 064306 (2007).Google Scholar
15. Pharr, C. M., Griffiths, P. R., Anal. Chem., 69, 46734679 (1997).Google Scholar
16. Wang, W. K., Lin, X. W., Mesleh, M., Jarrold, M. F., Dravid, V. P., Ketterson, J. B., Chang, R. P. H., J. Mater. Res., 10, 19771983 (1995).Google Scholar