Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T15:41:03.011Z Has data issue: false hasContentIssue false

Role of Coincident Site Lattice Boundaries in Creep and Stress Corrosion Cracking

Published online by Cambridge University Press:  15 March 2011

G.S. Was
Affiliation:
University of Michigan, Ann Arbor, MI
B. Alexandreanu
Affiliation:
Argonne National Laboratory, Argonne, IL
Peter Andresen
Affiliation:
General Electric Global Research, Schenectady, NY
Mukul Kumar
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA
Get access

Abstract

Interfaces control many properties in engineering materials, several of which are critical to the integrity of the engineering structure. In single phase, solid solution, austenitic alloys, grain boundaries are often the weak link, displaying susceptibility to creep, corrosion and stress corrosion cracking. As such, grain boundary structure control affords the opportunity to improve the overall performance of alloys in a variety of applications. The role of coincident site lattice boundary (CSLB) enhancement and grain boundary connectivity is examined for how it affects the response of an alloy to stress and the environment. Specifically, the effect of grain boundary character on creep, grain boundary sliding, intergranular stress corrosion cracking, and irradiation assisted stress corrosion cracking in austenitic nickel-base (high purity Ni-Cr-Fe and alloy 600) and iron-base (high purity Fe-Cr-Ni and 304 stainless steel) alloys and for ferritic- martensitic alloy T91 is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Watanabe, T., Kimura, S. I., Karashima, S., Phil. Mag. A 49 (1984) 845864.Google Scholar
2. Palumbo, G., King, P. J., Aust, K. T., Scr. Metall. et Mater. 25 (58) (1991) 1775.Google Scholar
3. Watanabe, T., Tsurekawa, S., Acta Mater. 47 (15) 1999) 41714185.Google Scholar
4. Lin, P., Palumbo, G., Erb, U., Aust, K. T., Scripta metal. Mater. 33 (1995) 1387.Google Scholar
5. Shimada, M., Kokawa, H., Wang, Z. J., Sato, Y. S., Karibe, I., Acta Mater. 50 (9) (2002) 23312341.Google Scholar
6. Lehockey, E. M., Palumbo, G.. Lin, P., Brennenstuhl, A. M., Scripta Mater. 36 (10) (1997) 12111218.Google Scholar
7. Palumbo, G., Aust, K. T.. Lehockey, E. M., Erb, U., Lin, P., Scripta Mater. 14 (1998) 6851690.Google Scholar
8. Crawford, D. C., Was, G. S., Metall Trans A 23 (1992) 1195.Google Scholar
9 Was, G. S., Thaveeprungsriporn, V., Crawford, D. C., JOM 50(2) (1997) 44.Google Scholar
10. Was, G. S., Alexandreanu, B., Capell, B. M., Thaveeprungsriporn, V., Angeliu, T. M., Hertzberg, J. L., Crawford, D.. Paraventi, D., Vaillant, F.. Chemistry and Electrochemistry of Stress Corrosion Cracking, Jones, R. H., Ed., Minerals, Metals and Materials Society, Warrendale, PA, 2001, p. 145.Google Scholar
11. Lin, P., Palumbo, G.. Aust, K. T., Scr. Metall. et Mater. 33(9) (1995) 1837.Google Scholar
12. Thaveeprungsriporn, V., Was, G. S., Metall Trans 28 (1997) 2101.Google Scholar
13. Alexandreanu, B., Capell, B. M., Was, G. S., Mater Sci Eng A 300 (2001) 94.Google Scholar
14. Lehockey, E. M., Palumbo, G., Mater Sci Eng A 237 (1996) 168.Google Scholar
15. Pan, Y., Olson, T., Adams, B. L., Canadian Metallurgical Quarterly 34 (1995) 147.Google Scholar
16. Palumbo, G., Lehockey, E. M., Lin, P., JOM 50(2) (1998) 4043.Google Scholar
17. Watanabe, T., Mater. Sci. Eng., A 176 (1994) 30.Google Scholar
18. Aust, K. T., Erb, R., Palumbo, G., Mater. Sci. Eng., A176 (1994) 329.Google Scholar
19. Gertsman, V. Y., Janecek, M., Tangri, K., Acta Mater. 44 (1996) 2869.Google Scholar
20. Gertsman, V. Y., Tangri, K., Acta Mater. 45 (1997) 4107.Google Scholar
21. Kononenko, O. V., Matveev, V. N., Field, D. P., J. Mater. Res. 16 (2001) 2124.Google Scholar
22. Kumar, M.. King, W. E., Schwartz, A. J., Acta Mater. 48 (2000) 2081.Google Scholar
23. Miyazawa, K., Iwasaki, Y., Ito, K., Ishida, Y., Acta Crystallographica A 52 (1996) 787.Google Scholar
24. King, W. E., Kumar, M., and Schwartz, A. J., in Proc. Advanced Materials for the 21st Century–The Julia Weertman Honorary Symposium, Chung, Y. W., Dunand, D. C., Liaw, P. K., and Olson, G. B., Eds., Minerals, Metals and Materials Society, Materials Park, OH, (1999) p. 231.Google Scholar
25. Minich, R. W., Schuh, C. A., Kumar, M., Physical Review B, 66 (2002) 052101.Google Scholar
26. Schwartz, A. J.. Kumar, M.. King, W. E., Mat. Res. Soc. Symp. Proc. 586 (2000) 3.Google Scholar
27. Schuh, C. A., Kumar, M., King, W. E., Acta Mater., 51 (2003) 687.Google Scholar
28. Schuh, C. A., Minich, R. W., Kumar, M., Philos. Mag., 83 (2003) 711.Google Scholar
29. Pond, R. C., Smith, D. A., Sotherden, P. W. J., Phil. Mag. A 37 (1978) 27.Google Scholar
30. Thaveeprungsriporn, V., Was, G. S., Scripta Mater. 35(1) (1996) 1.Google Scholar
31. Sangal, S., Tangri, K., Metall Trans 20 (1989) 479.Google Scholar
32. Ajaja, O., Scripta Mater. 15 (1981) 975.Google Scholar
33. Cadek, J., Creep in Metallic Materials, Elsevier Science, New York, NY, 1988 Google Scholar
34 Rhines, F. N., Craig, K. R., DeHoff, R. T., Metall Trans 5 (1974) 413.Google Scholar
35. Orlova, A., Bursik, J., Kucharova, K., Sklenicka, V.: Mater. Sci. Eng. A245 (1998) 3948.Google Scholar
36. Gupta, G., Alexandreanu, B. and Was, G. S., Metall. Trans. A, 35A (2004) 717719.Google Scholar
37. Kokawa, H., Watanabe, T., Karashima, S., J Mater Sci. 18 (1983) 1183.Google Scholar
38. Alexandreanu, B., Sencer, B.H., Thaveeprunsriporn, V. and Was, G.S., Acta Mater. 51 (2003) 38313848.Google Scholar
39. Yi, Y., Was, G. S., Proc. 9th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors. Warrendale, PA: The Metallurgical Society; 1999, 269.Google Scholar
40. Alexandreanu, B., Was, G. S., Phil. Mag. A 81(8) (2001) 1951.Google Scholar
41. Alexandreanu, B. and Was, G.S., Corrosion 59(8) (2003) 705720.Google Scholar
42. Hertzberg, J. and Was, G. S., Metall. Trans. A. 29A (1998) 10351046.Google Scholar
43. Andresen, P.L. and Briant, C.L., Corrosion, 45 (1989) 448463.Google Scholar
44. Niedrach, L.W., J. Electrochem. Soc. 127 (1980) 2122.Google Scholar
45. Dropek, R. B., Was, G. S., Gan, J., Cole, J. I., Allen, T. R. and Kenik, E. A., Proc.11th Int'l Conf. Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, American Nuclear Society, La Grange Park, IL, 2004, p 1132.Google Scholar