Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T23:09:49.139Z Has data issue: false hasContentIssue false

Role of Cation Dissociation in Schottky Barrier Formation at II–VI Compound Semiconductor-Metal Interfaces

Published online by Cambridge University Press:  15 February 2011

C. F. Brucker
Affiliation:
Xerox Webster Research Center, Webster, NY 14580 (U.S.A.)
L. J. Brillson
Affiliation:
Xerox Webster Research Center, Webster, NY 14580 (U.S.A.)
Get access

Extract

We used UV and X-ray photoemission spectroscopies to probe the relation between the chemical and electronic structure at ultrahigh-vacuum-cleaved CdS-metal and CdSe-metal interfaces. When combined with current-voltage and capacitance-voltage studies of the same interfaces in ultrahigh vacuum, the experimental results indicate that partially dissociated cadmium cations, produced as a consequence of interfacial chemical reaction, may be the electrically active species giving rise to the observed Fermi level stabilization at these contacts. The extent of cation dissociation, a spectroscopically determined quantity, is shown to correlate inversely with the measured Schottky barrier height. An indirect and modified doping effect is suggested as one possible mechanism to explain this behavior. Features of interdiffusion, in particular regarding the interfacial distribution of dissociated cadmium, are also described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Andrews, J. M. and Phillips, J. C., Phys. Rev. Lett., 35 (1975) 56.Google Scholar
2 Margaritondo, G., Rowe, J. E. and Christman, S. B., Phys. Rev. B, 14 (1976) 5396.CrossRefGoogle Scholar
2a Rowe, J. E., Margaritondo, G. and Christman, S. B., Phys. Rev. B, 15 (1977) 2195.CrossRefGoogle Scholar
3 Brillson, L. J., Phys. Rev. Lett., 40 (1978) 260.Google Scholar
4 Brillson, L. J., Brucker, C. F., Katnani, A. D., Stoffel, N. G. and Margaritondo, G., Phys. Rev. Lett., 46 (1981)838.Google Scholar
5 Bachrach, R. Z. and Bauer, R. S., J. Vac. Sci. Technol., 16 (1979) 1149.Google Scholar
6 Sinha, A. K. and Poate, J. M., in Poate, J. M., Tu, K. N. and Meyer, J. M. (eds.), Thin Films-Interdiffusion and Reactions, Wiley, New York, 1978, p. 407 and references cited therein.Google Scholar
7 Spicer, W. E., Lindau, I., Skeath, P., Su, C. Y. and Chye, P., Phys. Rev. Lett., 44 (1980) 420.Google Scholar
8 Williams, R. H., Montgomery, V. and Varma, R. R., J. Phys. C, 11 (1978) L735.CrossRefGoogle Scholar
9 Brillson, L. J., Brucker, C. F., Katnani, A. D., Stoffel, N. G. and Margaritondo, G., J. Vac. Sci. Technol., 19(1981) 661 ;Google Scholar
9a Appl. Phys. Lett., 38(1981) 784.CrossRefGoogle Scholar
10 Lum, W. Y. and Wieder, H. H., Appl. Phys. Lett., 31 (1977) 213.CrossRefGoogle Scholar
11 Brucker, C. F. and Brillson, L. J., J. Vac. Sci. Technol., 19(1981)617; 18(1981)787.Google Scholar
12 Mead, C. A., Solid-State Electron., 9 (1966) 1023.Google Scholar
13 Brucker, C. F. and Brillson, L. J., Appl. Phys. Lett., 39 (1981) 67.Google Scholar
14 Stoffel, N. G., Daniels, R. R., Margaritondo, G., Brucker, C. F. and Brillson, L. J., J. Vac. Sci. Technol., to be published.Google Scholar
15 Brucker, C. F., Brillson, L. J., Katnani, A. D., Stoffel, N. G. and Margaritondo, G., J. Vac. Sei. Technol., to be published.Google Scholar
16 Shevchik, N. J., Tejeda, J., Cardona, M. and Langer, D. W., Phys. Status Solidi B, 59 (1973) 87; 60 (1973) 345.CrossRefGoogle Scholar
17 Brillson, L. J., J. Vac. Sci. Technol., 17(1980) 476.Google Scholar
18 Fuggle, J. C., Watson, L. M., Fabian, D. J. and Norris, P. R., Solid State Commun., 13 (1973) 507.Google Scholar
19 Shevchik, N.J., J. Phys. F, 5 (1975) 1860.Google Scholar
20 Uchida, I., J. Phys. Soc. Jpn., 22 (1967) 770.Google Scholar
21 Kroger, F. A., Diemer, G. and Klasens, H. A., Phys. Rev., 103 (1956) 279.Google Scholar
22 Shiozawa, L. R., Augustine, F., Sullivan, G. A., Smith, J. M. and Cook, W. R., ARL Rep. 69155, 1969 (Aerospace Research Laboratories).Google Scholar
23 Freeman, E. C. and Slowik, J. H., Appl. Phys. Lett., 39 (1981) 96.Google Scholar
24 Hansen, M., Constitution of Binary Alloys, McGraw-Hill, New York, 1958, pp. 77, 192, 416.Google Scholar
25 Freeouf, J. L. and Woodall, J. M., Appl. Phys. Lett., 39 (1981) 727.Google Scholar
26 Tu, K. N., Appl. Phys. Lett., 27(1975) 221.Google Scholar
27 Brucker, C. F. and Brillson, L. J., unpublished data, 1981.Google Scholar
28 Milnes, A. G. and Feucht, D. L., Heterojunctions and Metal-Semiconductor Junctions, Academic Press, New York, 1972, p. 303.Google Scholar
29 Luo, F., J. Vac. Sci. Technol., 16 (1979) 1045.Google Scholar