Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:59:09.039Z Has data issue: false hasContentIssue false

Role of Boron TED and Series Resistance in SiGe/Si Heterojunction pMOSFETs

Published online by Cambridge University Press:  31 January 2011

Yonghyun Kim
Affiliation:
[email protected], The University of Texas at Austin, Austin, Texas, United States
Chang Yong Kang
Affiliation:
[email protected], SEMATECH, Austin, Texas, United States
Se-Hoon Lee
Affiliation:
[email protected], The University of Texas at Austin, Austin, Texas, United States
Prashant Majhi
Affiliation:
[email protected], SEMATECH, Austin, Texas, United States
Byoung-Gi Min
Affiliation:
[email protected], JUSUNG America Inc., Round Rock, Texas, United States
Ki-Seung Lee
Affiliation:
[email protected], JUSUNG America Inc., Round Rock, Texas, United States
Donghwan Ahn
Affiliation:
[email protected], The University of Texas at Austin, Austin, Texas, United States
Sanjay K. Banerjee
Affiliation:
[email protected], The University of Texas at Austin, Austin, Texas, United States
Get access

Abstract

We investigate boron transient enhanced diffusion (TED) and series resistance in SiGe/Si heterojunction channel pMOSFET. The stress gradient at the SiGe/Si interface near the gate edge in high Ge concentrations are found to determine boron TED as well as extension junction shape, which has a significant impact on the parasitic LDD and source/drain (S/D) series resistance. In addition, high Ge concentrations in the epitaxial SiGe layer on top of Si substrate result in a high sheet resistance during a 1000°C/5s rapid thermal processing (RTP), which is mainly due to alloy scattering and interface roughness scattering.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ghani, T., Amstrong, M., Auth, C., Bost, M., Chavat, P., Glass, G., Hoffman, T., Johnson, K., Kenyon, C., Klaus, J., McIntyre, B., Mistry, K., Murthy, A., Sandford, J., Silberstein, M., Sivakumar, S., Smith, P., Zawadzki, K., Thompson, S., and Bohr, M., in IEDM Tech. Dig., 1161 (2003).Google Scholar
[2] G. O'Neill, A. and Antoniadis, A. D., IEEE Trans. Electron Devices 43, 911 (1996).Google Scholar
[3] Rim, K., L. Hoyt, J., and Gibbons, J. F., IEEE Trans. Electron Devices 47, 1406 (2000).Google Scholar
[4] Lee, S., Majhi, P., Oh, J., Sassman, B., Young, C., Bowoner, A., Loh, W., Choi, K., Cho, B., Lee, H., Kirsch, P.. Harris, H., Tsai, W., Datta, S., Tseng, H., Banerjee, S. K., and Jammy, R., IEEE Electron Device Lett. 29, 1017 (2008).Google Scholar
[5] People, R., IEEE J. Quantum Electron 22, 1696 (1986).Google Scholar
[6] Welser, J. J., Hoyt, J. L., and Gibbons, J. F., IEEE Electron Device Lett. 15, 100 (1994).Google Scholar
[7] Wang, G. H., Toh, E., Du, A., Lo, G., Samudra, G., and Yeo, Y., IEEE Trans. Electron Devices 29, 77 (2008).Google Scholar
[8] Kim, S., Park, C., and Woo, J. C. S., IEEE Trans. Electron Devices 49, 467 (2002).Google Scholar
[9] Kim, S., Park, C., and Woo, J. C. S., IEEE Trans. Electron Devices 49, 1748 (2002).Google Scholar
[10] Ranade, P., Takeuchi, H., Lee, W., Subramanian, V., and King, T., IEEE Trans. Electron Devices 49, 1436 (2002).Google Scholar
[11] King, T. J., McVittie, J., Saraswat, K. C., and Pfiester, J. R., IEEE Trans. Electron Devices 41, 228 (1994).Google Scholar
[12] Thompson, P. E., Crosby, R., Bennet, J., and Felch, S., J. Vac. Sci. Technol. B 22(5), 2333 (2004).Google Scholar
[13] Park, J., Huh, Y., and Hwang, H., Appl. Phys. Lett. 74, 1248 (1999).Google Scholar
[14] Cowern, N. E. B., Colombeau, B., Benson, J., Smith, A. J., Lerch, W., Paul, S., Graf, T., Cristiano, F., Hebras, X., and Bolze, D., Appl. Phys. Lett. 86, 101905 (2005).Google Scholar
[15] Impellizzeri, G., Mirabella, S., Piro, A. M., Grimaldi, M. G., Priolo, F., Giannazzo, F., Raineri, V., Napolitani, E., and Carnera, A., Appl. Phys. Lett. 91, 132101 (2007).Google Scholar
[16] Anthony, B., Hsu, T., Breaux, L., Qian, R., Banerjee, S. K., and Tasch, A., J. Elec. Mat. 19, 1027 (1990).Google Scholar
[17] Li, C., John, S., Quinones, E., and Banerjee, S. K., J. Vac. Sci. Tech. A 14, 170 (1996).Google Scholar
[18] People, R. and Bean, J. C., Appl. Phys. Lett. 47, 322 (1985).Google Scholar
[19] Yuan, T. and Tak, H.N., Fundamentals of modern VLSI devices. 1998: Cambridge University Press. 469.Google Scholar
[20] Kuo, P., Hoyt, J. L., Gibbons, J. F., Turner, J. E., and Lefforge, D., Appl. Phys. Lett. 66, 580 (1995).Google Scholar
[21] Zangenberg, N. R., Fage-Pedersen, J., and Hansen, J. L., J. Appl. Phys. 94, 3883 (2003).Google Scholar
[22] Dunham, S., Diebel, M., Ahn, C., and Shih, C., J. Vac. Sci. & Tech. 24, 456 (2006).Google Scholar
[23] Lin, L., Kirichenko, T., Sahu, B. R., Hwang, G. S., and Banerjee, S. K., Phy. Rev. B 72, 205206 (2005).Google Scholar
[24] Xia, G., Olubuyide, O., Hoyt, J. L., and Canonico, M., Appl. Phys. Lett. 88, 013507 (2006).Google Scholar
[25] Sentaurus Process User Guide A-2008.09, Mountain View, Synopsys, 2008.Google Scholar
[26] Crosby, R. T., Jones, K. S., Law, M. E., Radic, L., Thompson, P. E., and Liu, J., Appl. Phys. Lett. 87, 192111 (2005).Google Scholar