Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:53:24.764Z Has data issue: false hasContentIssue false

The Role of Atomic Hydrogen for Substrate Cleaning for Growth of CdTe Buffer Layers at Reduced Temperatures on Silicon, CdTe, and HgCdTe

Published online by Cambridge University Press:  10 February 2011

L. S. Hirsch
Affiliation:
Physics Department, West Virginia University, Morgantown, WV 26506
Zhonghai Yu
Affiliation:
Physics Department, West Virginia University, Morgantown, WV 26506
M. R. Richards-Babb
Affiliation:
Chemistry Department, West Virginia University, Morgantown, WV 26506
T. H. Myers
Affiliation:
Physics Department, West Virginia University, Morgantown, WV 26506, [email protected]
Get access

Abstract

Atomic hydrogen is shown to be efficacious for cleaning CdTe and HgCdTe substrates for subsequent CdTe growth by molecular beam epitaxy. While single crystal ZnTe and CdTe growth was obtained on Si substrates that underwent an ex-situ HF-based etch, only polycrystalline CdTe or ZnTe could be obtained on surfaces cleaned using an atomic hydrogen source. This result is possibly related to gas-phase transport of Te to the Si surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Luo, Y., Slater, D. A., and Osgood, R. M. Jr, Appl. Phys. Lett. 67, 55 (1995).Google Scholar
2 Lo, Y., Bicknell, R.N., Myers, T.H., Schetzina, J.F., and Stadelmeier, H.H., J. Appl. Phys. 54, 4238 (1983).Google Scholar
3 Sporken, R., Sivananthan, S., Mahavadi, K.K., Monfroy, G., Boukerche, M. and Faune, J.P., Appl. Phys. Lett. 55, 1879 (1989).Google Scholar
4 Fermer, D.B., Biegelsen, D.K. and Brigans, R.D., J. Appl. Phys. 66, 419 (1989).Google Scholar
5 See, for ex., Meyerson, B.S., Hipsel, F.J., and Uram, K. J., Appl. Phys. Lett. 57, 1034 (1990).Google Scholar
6 Dhar, N.K., Wood, C.E.C., Gray, A., Wei, H. Y., Salamanca-Riba, L. and Diana, J.H., J. Vac. Sci. Technol. B 14, 2366 (1996).Google Scholar
7 de Lyon, T.J., Roth, J.A., Wu, O.K., Johnson, S.M. and Cockrum, C.A., Appl. Phys. Lett. 63, 818 (1993)Google Scholar
8 Okada, Y., Fujita, T., and Kawabe, M., Appl. Phys. Lett. 67, 676 (1995)Google Scholar
9 Yu, Zhonghai, Buczkowski, S.L., Petcu, M. C., Giles, N. C., and Myers, T. H., Appl. Phys. Lett. 68, 529 (1996)Google Scholar
10 Yu, Zhonghai, Buczkowski, S.L., Giles, N. C., and Myers, T. H., Appl. Phys. Lett. 69, 82 (1996)Google Scholar
11 Yu, Zhonghai, Buczkowski, S.L., Hirsch, L.S., and Myers, T. H., to appear in the Dec. 96 issue of J. Appl. Phys.Google Scholar
12 Werthen, J. G., Haring, J. P., and Bube, R. H., J. Appl. Phys. 54, 1159 (1983)Google Scholar
13 Slosbach, U. and Richter, H. J., Surf. Sci. 97, 191 (1980)Google Scholar
14 Bahl, M. K., Watson, R. L., and Irgolic, K. J., J. Chem. Phys. 66, 5526 (1977)Google Scholar
15 Granthaner, P.J., Grunthaner, F.J., Fathauer, R.W., Lin, T.L., Hecht, M.H., Bell, L.D., Kaiser, W.J., Schowengendt, F.D. and Mazur, J.H., Thin Solid Films 183, 197 (1989).Google Scholar
16 Romano, L.T., Bringans, R.D., Zhou, X. and Kirk, W.P., Phys. Rev. B. 52, 11, 201 (1995)Google Scholar