Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T23:22:48.288Z Has data issue: false hasContentIssue false

Rod-like Dinuclear Ruthenium Complexes for Dye-sensitized Photovoltaics

Published online by Cambridge University Press:  15 March 2011

Ravi Mosurkal
Affiliation:
Center for Advanced Materials, University of Massachusetts, Lowell, MA 01854
Jin-An He
Affiliation:
Center for Advanced Materials, University of Massachusetts, Lowell, MA 01854
Jayant Kumar
Affiliation:
Center for Advanced Materials, University of Massachusetts, Lowell, MA 01854
Lian Li
Affiliation:
Molecular Technologies Inc., Westford, MA 01886
John Walker
Affiliation:
Department of the Army, U.S. Army Soldier and Biological Chemical Command Natick Soldier Center, Natick, MA 01760
Lynne Samuelson
Affiliation:
Department of the Army, U.S. Army Soldier and Biological Chemical Command Natick Soldier Center, Natick, MA 01760
Get access

Abstract

Ruthenium complexes with tridentate terpyridine type ligands have many structural advantages over the complexes with bipyridine ligands. Polynuclear ruthenium complexes prepared using these terpyridine ligands bridged with phenylene rings are potential candidates for photosensitization in dye-sensitized photovoltaic cells. In this study, we have carried out synthesis, characterization and theoretical modeling of rigid, rod-like homometallic dinuclear ruthenium complexes using terpyridine and bipyridine ligands. The photophysical and photovoltaic properties have been investigated. These supramolecular dyes are found to be efficient photosensitizers in dye-sensitized photovoltaic cells when a liquid electrolyte is employed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hagfeldt, A., Grätzel, M., Acc. Chem. Res. 33, 269 (2000).Google Scholar
2. Nazeerudin, M.K., Kay, A., Rodicio, I., Humphry, B.R., Mueller, E., Liska, P., Vlachopoulos, N., Gratzel, M., J. Am. Chem. Soc. 115, 6382 (1993).Google Scholar
3. Ruile, S., Kohle, O., Pechy, P., Gratzel, M., Inorg. Chim. Acta 261, 129 (1997).Google Scholar
4. Ferrere, S., Zaban, A., Gregg, B.A., J. Phys.Chem. 101, 4490 (1997).Google Scholar
5. Ferrere, S., Chem. Mater. 12, 1083 (2000).Google Scholar
6. Indelli, M.T., Scandola, F., Collin, J.P., Sauvage, J.P. and Sour, A., Inorg. Chem. 35, 303 (1996).Google Scholar
7. Barigelletti, F., Flamigni, L., Balzani, V., Collin, J.P., Sauvage, J.P., Sour, A., Constable, E.C. and Thompson, A.M.W.Cargill, J. Am. Soc. Chem. 116, 7692 (1994).Google Scholar
8. Hammarström, L., Barigelletti, F., Flamigni, L., Indelli, M.T., Armaroli, N., Calogero, G., Guardigli, M., Sour, A., Collin, J.P. and Sauvage, J.P., J. Phys. Chem. A. 101, 9061 (1997)Google Scholar
9. Kleverlaan, C.J., Indelli, M.T., Bignozzi, C.A., Pavanin, L., Scandola, F., Hasselman, G.M. and Meyer, G.J., J. Am. Soc. Chem. 122, 2840 (2000).Google Scholar
10. Rensmo, H., Lunell, S. and Siegbahn, H., J. Photochem. Photobio. A. 114, 117 (1998).Google Scholar