Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T00:40:27.968Z Has data issue: false hasContentIssue false

Rheology for Better Sol-Gel Fiber and Film Formation

Published online by Cambridge University Press:  28 February 2011

C. W. Macosko
Affiliation:
Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN 55455
M. L. Mecartney
Affiliation:
Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN 55455
L. E. Scriven
Affiliation:
Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

Flow behavior of a liquid or suspension depends on how stress varies with strain rate, strainrate rotation, and strain history, as well as the progress of evaporation, extent of reaction, and degree of aggregation in sol-gel systems. Rheological methods suitable for measuring flow behavior are summarized. Examples of measurements and microstructural observations by transmission electron microscopy made during gelation of four sol-gel systems are presented. The relation of rheological response to microstructure is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bird, R. B., Armstrong, R. C., and Hassager, O., Dynamics of Polymeric Liquids, 2nd ed., Wiley, New York, 1987.Google Scholar
2. Macosko, C. W., Rheological Measurements, VCH Publishers, New York, to appear.Google Scholar
3. Russel, W. B., Saville, D. A., and Schowalter, W. R., Colloidal Dispersions, Cambridge University Press, New York, 1989.Google Scholar
4. Ferry, W. D., Viscoelastic Properties of Polymers, 3rd ed., Wiley, New York, 1980.Google Scholar
5. Schunk, P. R. and Scriven, L. E., J. Rheol. 34, in press (1990).Google Scholar
6. Brinker, C. J. and Scherer, G. W., Sol-Gel Science, Academic Press, San Diego, 1990.Google Scholar
7. Secor, R. B., Schunk, P. R., Hunter, T. B., Stitt, T. F., Macosko, C. W., and Scriven, L. E., J. Rheol. 33, 1329 (1989).Google Scholar
8. Fuller, G. G., Cathey, C. A., Hubbard, B., and Zebrowski, B. B., J. Rheol. 31, 235 (1987).Google Scholar
9. Mikkelsen, K. J., Macosko, C. W., and Fuller, G. G., Proc. Xth Int. Congr. Rheol. Sydney 2, 125 (1988).Google Scholar
10. Schunk, P. R., de Santos, J. M., and Scriven, L. E., J. Rheol. 34, 387 (1990).Google Scholar
11. Barnes, H., Hutton, J. F., and Walters, K., Rheoloeical Behavior, Elsevier, London, 1989.Google Scholar
12. Bailey, J. K., Bellare, J. R., and Mecartney, M. L., in Specimen Preparation for Transmission Electron Microscopy of Materials, eds. Bravman, J. C., Anderson, R. M., and McDonald, M. L. (Mater. Res. Soc. Proc. 115, Pittsburgh, 1988) 69.Google Scholar
13. Bellare, J., Bailey, J. K., and Mecartney, M. L., in Ultrastructure Processing of Advanced Ceramics, eds. Mackenzie, J. D. and Ulrich, D. R., Wiley, New York (1988) 835.Google Scholar
14. Bailey, J. K., Nagase, T., Broberg, S. M., and Mecartney, M. L., J. Noncryst. Solids 109, 198 (1988).Google Scholar
15. Sakka, S. and Kamiya, K., J. Noncryst. Solids 48, 31 (1982).Google Scholar
16. Sakka, S. and Kozuka, H., J. Noncryst. Solids 100, 142 (1988).Google Scholar
17. Bailey, J. K., Nagase, T., Pozarnsky, G. A. and Mecartney, M. L., these proceedings.Google Scholar
18. Juliusburger, F. and Pirquet, A., Trans. Farad. Soc. 32, 445 (1936).Google Scholar