Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T23:27:31.354Z Has data issue: false hasContentIssue false

RF and Microwave Plasma Deposition of Polymer Films: Effect of Frequency

Published online by Cambridge University Press:  28 February 2011

R. Claude
Affiliation:
Département de Physique, Université de Montréal, Montréal H3C 3J7, Québec Département de Génie Physique, Ecole Polytechnique, Montréal H3C 3A7, Québec
M. Moisan
Affiliation:
Département de Physique, Université de Montréal, Montréal H3C 3J7, Québec
M. R. Wertheimer
Affiliation:
Département de Génie Physique, Ecole Polytechnique, Montréal H3C 3A7, Québec
Get access

Abstract

The surface wave (SW) plasma technology is used to investigate possible frequency effects in the deposition kinetics of plasma polymers over the range 100–915 MHz.Hydrocarbon and fluorocarbon monomers are excited by a SW produced argon plasma, at a total pressure of 50 mTorr, under various monomer flows.Using Yasuda's normalization procedure, we have so far been unable to distinguish frequency dependent deposition in this high frequency (HF) regime.However, the present data indicate substantially (an order of magnitude) higher deposition rates than those reported by Gazicki and Yasuda for low frequencies.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wertheimer, M.R. and Moisan, M., J.Vac.Sci.Technol. A3, 2643 (1985).CrossRefGoogle Scholar
2. Ferreira, C.M. and Loureiro, J., J.Phys.D: Appl.Phys. 17, 1175 (1984).CrossRefGoogle Scholar
3. Moutoulas, C., Moisan, M., Bertrand, L., Hubert, J., Lachambre, J.L., and Ricard, A., Appl.Phys.Lett. 46, 323 (1985).CrossRefGoogle Scholar
4. Paquin, L., Masson, D., Wertheimer, M.R., and Moisan, M., Can.J.Phys. 63, 831 (1985).CrossRefGoogle Scholar
5. Hudgens, S.J. and Johncock, A.G., presented at the 1985 MRS Spring Meeting, San Francisco, CA, 1985 (unpublished).Google Scholar
6. Wertheimer, M.R., Klemberg-Sapieha, J.E., and Schreiber, H.P., Thin Solid Films 115, 109 (1984).CrossRefGoogle Scholar
7. Tessier, Y., Klemberg-Sapieha, J.E., Poulin-Dandurand, S., and Wertheimer, M.R., this conference.Google Scholar
8. Dzioba, S., Este, G., and Naguib, H.M., J.Electrochem.Soc. 129, 2537, (1982).CrossRefGoogle Scholar
9. Paraszczak, J., Hatzakis, M., Babich, E., Shaw, J., Arthur, E., Grenon, B., and DePaul, M., presented at the 1984 Microcircuit Engineering Conference, Berlin (Conference proceedings).Google Scholar
10. Moisan, M., Zakrzewski, Z., and Pantel, R., J.Phys.D: Appl.Phys. 12, 219 (1979).CrossRefGoogle Scholar
11. Moisan, M., Zakrzewski, Z., Pantel, R., and Leprince, P., IEEE Trans.Plasma Sci. PS–12, 203 (1984).CrossRefGoogle Scholar
12. Moisan, M. and Zakrzewski, Z., presented at the XVII Int.Phenomena, C. in Ionized Gases, Budapest, 1985, Contributed papers, p.712–4.Google Scholar
13. Hubert, J., Moisan, M., and Zakrzewski, Z., Spectrochim.Acta (to appear 1986).Google Scholar
14. Moisan, M. and Zakrzewski, Z., NATO Advanced Study Institute on Radiative Processes in Discharge Plasmas, edited by Luessen, L.H. and Proud, J.M. (Plenum, New York 1986, to appear).Google Scholar
15. Yasuda, H., Plasma Polymerization (Academic Press, New York 1985).Google Scholar
16. Gazicki, M. and Yasuda, H., J.Appl.Polym.Sci., Appl.Polym.Symp. 38, 35 (1984).Google Scholar