Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:03:01.328Z Has data issue: false hasContentIssue false

A Review of Recent Results on Single Crystal Metastable Semiconducfors: Crystal Growth, Phase Stability, and Physical Properties

Published online by Cambridge University Press:  26 February 2011

S. A. Barnett
Affiliation:
Department of Metallurgy, the Coordinated Science, Laboratory, the Materials Research Laboratory, University of Illinois, Urbana, Illinois, 61801
B. Kramer
Affiliation:
Department of Metallurgy, the Coordinated Science, Laboratory, the Materials Research Laboratory, University of Illinois, Urbana, Illinois, 61801
L. T. Romano
Affiliation:
Department of Metallurgy, the Coordinated Science, Laboratory, the Materials Research Laboratory, University of Illinois, Urbana, Illinois, 61801
S. I. Shah
Affiliation:
Department of Metallurgy, the Coordinated Science, Laboratory, the Materials Research Laboratory, University of Illinois, Urbana, Illinois, 61801
M. A. Ray
Affiliation:
Department of Metallurgy, the Coordinated Science, Laboratory, the Materials Research Laboratory, University of Illinois, Urbana, Illinois, 61801
S. Fang
Affiliation:
Department of Metallurgy, the Coordinated Science, Laboratory, the Materials Research Laboratory, University of Illinois, Urbana, Illinois, 61801
J. E. Greene
Affiliation:
Department of Metallurgy, the Coordinated Science, Laboratory, the Materials Research Laboratory, University of Illinois, Urbana, Illinois, 61801
Get access

Abstract

Recent results on metastable semiconducting alloys, concerning in particular the growth of new Sn-based alloys (GaSb)1−x(Sn2)x and Gel−xSnx and the physical properties of (GaAs)1−x(Ge2)x and (GaSb)1−x(Ge2)x, are discussed. (GaSb)1−x(Sn2)x and Ge1−xSnx alloy films were grown with x-values as high as 0.20 and 0.15, respectively, well in excess of equilibrium Sn solid solubility limits (<1%) while epitaxial (GaAs)1−x(Ge2) and (GaSb)1−x(Ge2)x alloys were obtained on (100) GaAs at compositions ranging across the pseudobinary phase diagram. Low energy ion bombardment induced collisional mixing and preferential sputtering during film growth played a critical role in obtaining single phase alloys. An optimal ion energy, which depended on the ion flux and the alloy composition, was determined, allowing in most cases growth at temperatures T, sufficient for obtaining single crystal alloys on (100) GaAs and (100) Ge substrates. Decomposition of the Sn-based alloys occurred above a critical Ts- value via α-Sn-rich precipitates which were stable above the β-Sn melting point. X-ray diffraction, STEM, EXAFS, and Raman spectroscopy measurements, performed on single crystal (GaAs)1−x(Ge2)x and (GaSb)1−x(Ge2)x alloys, indicate that there is a transition in the long-range order from zincblende to diamond with increasing x while the short-range order remains perfect at all compositions, i.e. no V-V or III-Ill bonds are observed. These results are discussed in light of recent models which relate (GaAs)1−x(Ge2)x atomic structure to its band structure and optical properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Duwez, P., Willens, R.H., and Klement, W., Jr, J. Appl. Phys. 31, 1136 (1960).CrossRefGoogle Scholar
2. Jones, H., Rep. Prog. Phys. 36, 1425 (1973).Google Scholar
3. See the paper by Farrow, R.F.C. in this volume.Google Scholar
4. Noreika, A.J. and Francombe, M.H., J. Appl. Phys. 45, 3690 (1974).Google Scholar
5. Barnett, S.A., Ray, M.A., Lastras, A., Kramer, B., Greene, J.E., and Raccah, P.M., Electron. Lett. 18, 891 (1982).Google Scholar
6. Alferov, Zh.l., Zhingarev, M.Z., Konnikov, S.G., Mokin, I.I., Ulin, V.P., Umanskii, V.E., and Yavich, B.S., Soy. Phys. Semicond. 16, 532 (1982).Google Scholar
7. Alferov, Zh.I., Sov. Phys. Semicond. 16.567 (1982).Google Scholar
8. Newman, K.E., Lastras, A., Krammer, B., Barnett, S.A., Ray, M.A., Dow, J.D., Greene, J.E., and Raccah, P.M., Phys. Rev. Lett. 50, 1466 (1983).Google Scholar
9. Fang, S. and Greene, J.E., unpublished.Google Scholar
10. Cadien, K.C., Eltoukhy, A.H., and Greene, J.E., Appl. Phys. Lett 38, 773 (1981).Google Scholar
11. Cadien, K.C., Eltoukhy, A.H., and Greene, J.E., Vacuum 31, 253 (1981).CrossRefGoogle Scholar
12. Shah, S.I., Cadien, K.C., and Greene, I.E., J. Electron. Mater. 11, 53 (1982).Google Scholar
13. Cadien, K.C. and Greene, J.E., Apph. Phys. Letters 40, 329 (1982).Google Scholar
14. Greene, J.E., Barnett, S.A., Cadien, K.C., and Ray, M.A., J. Cryst. Growth 56, 389 (1982).Google Scholar
15. Krabach, T.N., Wada, N., Klein, M.V., Cadien, K.C., and Greene, J.E., Solid State Commun. 45, 895 (1983).Google Scholar
16. Cadien, K.C., Muddle, B.C., and Greene, J.E., I. Appl. Phys. 55, 4177 (1984).CrossRefGoogle Scholar
17. Romano, L.T., Barnett, S.A., and Greene, J.E., unpublished.Google Scholar
18. Sood, A.K., Wu, K. and Zemel, J.N., Thin Solid Films 48, 76 (1978).Google Scholar
19. Sood, A.K., Wu, K. and Zemel, J.N., Thin Solid Films 48. 87 (1978).CrossRefGoogle Scholar
20. Zilko, J.L. and Greene, J.E., J. Appl. Phys. 51. 1549 (1980).Google Scholar
21. Zilko, J.L. and Greene, J.E., J. Appl. Phys. 51, 1560 (1980).Google Scholar
22. Noreika, A.J., Takei, W.J., Francombe, M.H., and Wood, C.E.C., J. Appl. Phys. 53.4932 (1982).Google Scholar
23. Farrow, R.F.C., Robertson, D.S., Williams, G.M., Cullis, A.G., Jones, G.R., Young, I.M., and Dennis, P.N.J., J. Cryst. Growth 54, 507 (1981).Google Scholar
24. Shah, S.I. and Greene, J.E., unpublished.Google Scholar
25. Gerdes, F. and Predel, B., J. Less-Common Metals 79, 281 (1981).Google Scholar
26. Greene, J.E., J. Vac. Sci. Technol. BI, 229 (1983).Google Scholar
27. Greene, J.E. and Barnett, S.A., J. Vac. Sci. Technol. 21, 285 (1982).Google Scholar
28. Greene, J.E., CRC Critical Reviews of Solid State and Materials Science 11, 47 (1983) and 11, 189 (1984).Google Scholar
29. Klemm, W. and Stohr, H., Z. Anorg. Chem 241, 305 (1939).Google Scholar
30. Barnett, S.A. and Greene, J.E., Surf. Sci. 128, 401 (1983).Google Scholar
31. Wickersham, C.E. and Greene, J.E., J. Appl. Phys. 47,4734 (1976).Google Scholar
32. Wickersham, C.L. and Greene, J.E., J. Appl. Phys. 47, 2289 (1976).CrossRefGoogle Scholar
33. Barnett, S.A., Bajor, G., and Greene, J.E., Appl. Phys. Letters 37, 734 (1980).Google Scholar
34. Zilko, J.L., Barnett, S.A., Eltoukhy, A.H., and Greene, J.E., J. Vac. Sci. Technol. 14, 595 (1980).Google Scholar
35. Besserman, R., Greene, J.E., Klein, M.V., Krabach, T.N., McGlinn, T.C., Romano, L.T., and Shah, S.I., Proc. 17th Internat. Conf. Phys. Semicond., San Francisco, August, 1984.Google Scholar
36. Stern, E.A., Ellis, F., Kim, K., Romano, L., Shah, S.I., and Greene, J.E., unpublished.Google Scholar
37. Newman, K.E. and Dow, J.D., Phys. Rev. B27, 7495 (1983).Google Scholar
38. Hollowy, H. and Davis, L.C., Phys. Rev. Letters 53, 830 (1984).Google Scholar