Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:58:54.322Z Has data issue: false hasContentIssue false

Reversible Electrical Field-Induced Formation of Ruddlesden-Popper Phases in Strontium Titanate at Room Temperature

Published online by Cambridge University Press:  01 February 2011

Dirk Carl Meyer
Affiliation:
[email protected], Technische Universität Dresden, Physics, Mommsenstrasse 13, Dresden, N/A, 01069, Germany, 49 351 46332536
Alexandr A. Levin
Affiliation:
[email protected], Technische Universität Dresden, Dresden, N/A, 01069, Germany
Tilmann Leisegang
Affiliation:
[email protected], Technische Universität Dresden, Dresden, N/A, 01069, Germany
Emanuel Gutmann
Affiliation:
[email protected], Technische Universität Dresden, Dresden, N/A, 01069, Germany
Marianne Reibold
Affiliation:
[email protected], Technische Universität Dresden, Dresden, N/A, 01069, Germany
Peter Paufler
Affiliation:
[email protected], Technische Universität Dresden, Dresden, N/A, 01069, Germany
Wolfgang Pompe
Affiliation:
[email protected], Technische Universität Dresden, Dresden, N/A, 01069, Germany
Get access

Abstract

On base of the structural characteristics of near-surface regions of a SrTiO3 (001) (STO (001)) single-crystal plate revealed by means of wide-angle X-ray scattering (WAXS), X-ray fluorescence spectroscopy and high-resolution transmission electron microscopy, structural changes in the STO (001) single-crystal plate under the influence of an external electric field at room temperature can be described as the tunable and reversible formation of Ruddlesden-Popper-phases of the quasi-binary system SrO-TiO2. The WAXS behavior implies the use of the reversible phase-transition for adaptive X-ray optics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hutton, J., and Nelmes, R.J., J. Phys. C 14, 1713 (1981).Google Scholar
2. Levin, E. M., Robbins, C. R., and McMurdie, H. F., Phase Diagrams for Ceramicists, Amer. Ceram. Soc. Columbus (1964).Google Scholar
3. Ruddlesden, S.N., and Popper, P., Acta Cryst. 11, 54 (1958).Google Scholar
4. Noguera, C., Philos. Mag. Lett. 80, 173 (2000).Google Scholar
5. Tilley, R.J.D., J. Solid State Chem. 21, 293 (1977).Google Scholar
6. Ruddlesden, S.N., Popper, P., Acta Cryst. 10, 538 (1957).Google Scholar
7. Szot, K., Pawelczyk, M., Herion, J., Freiburg, C., Albers, J., Waser, R., Hulliger, J., Kwapulinski, J., and Dec, J., Appl. Phys. A 62, 335 (1996).Google Scholar
8. Szot, K., Speier, W., Herion, J., and Freiburg, C., Appl. Phys. A 64, 55 (1997).Google Scholar
9. Blanc, J., and Staebler, D.L., Phys. Rev. B 4, 3548 (1971).Google Scholar
10. Meyer, D.C., Levin, A.A., Bayer, S., Gorbunov, A., Pompe, W., and Paufler, P., Appl. Phys. A 80, 515 (2005).Google Scholar
11. Meyer, D.C., Levin, A.A., Leisegang, T., Gutmann, E., Paufler, P., Reibold, M., and Pompe, W., Appl. Phys. A 81, (2006) (in press, DOI: 10.1007.s00339-006-3584-2).Google Scholar
12. Meyer, D.C., Levin, A.A., Leisegang, T., and Paufler, P., German Patent Application DE 102004058035 (2004).Google Scholar