Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-06T01:23:09.898Z Has data issue: false hasContentIssue false

Reverse Plasticity in Nanoindentation

Published online by Cambridge University Press:  01 February 2011

Yongjiang Huang
Affiliation:
[email protected], Harbin Institute of Technology, School of Materials Science and Engineering, Harbin, 150001, China, People's Republic of
Nursiani Indah Tjahyono
Affiliation:
[email protected], University of Auckland, Chemical and Materials Engineering, 20 Symonds Street, Auckland, 1142, New Zealand
Jun Shen
Affiliation:
[email protected], Harbin Institute of Technology, School of Materials Science and Engineering, Harbin, 150001, China, People's Republic of
Yu Lung Chiu
Affiliation:
[email protected], University of Auckland, Chemical and Materials Engineering, 20 Symonds Street, Auckland, 1142, New Zealand
Get access

Abstract

This paper summarises our recent cyclic nanoindentation experiment studies on a range of materials including single crystal and nanocrystalline copper, single crystal aluminium and bulk metallic glasses with different glass transition temperatures. The unloading and reloading processes of the nanoindentation curves have been analysed. The reverse plasticity will be discussed in the context of plastic deformation mechanisms involved. The effect of loading rates on the mechanical properties of materials upon cyclic loading will also be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Oliver, W.C., and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).Google Scholar
2 Shuman, D. J., Costa, A. L. M., Andrade, M. S., Mater. Charac. 58, 380 (2007).Google Scholar
3 Raju, T.D., Nakasa, K., Kato, M., Acta Mater. 51, 457 (2003).Google Scholar
4 Pan, D., Nieh, T. G., Chen, M. W., Appl. Phys. Lett. 88, 161922 (2006).Google Scholar
5 Xu, B.X., Yue, Z.F., Wang, J., Mech. Mater. 39, 1066 (2007).Google Scholar
6 Tjahyono, N.I., Chiu, Y.L., Mater. Res. Soc. Symp. Proc. submitted (2007).Google Scholar
7 Guo, F.Q., Wang, H.J., Poon, S.J., Shiflet, G.J., Appl. Phys. Lett. 86, 091907 (2005).Google Scholar
8 Huang, Y.J., Shen, J., Sun, J.F., Yu, X.B., J. Alloys. Compd. 427, 171 (2007).Google Scholar
9 Shen, J., Chen, Q.J., Sun, J.F., Fan, H.B., Wang, G., Appl. Phys. Lett. 86, 151907 (2005).Google Scholar
10 Xu, Z.H., Li, X.D, Acta Mater. 53, 1913 (2005).Google Scholar
11 Chowdhury, S., Laugier, M. T., Appl. Surf. Sci. 233, 219 (2004).Google Scholar
12 Yang, B., Liu, C. T., Nieh, T. G., Appl. Phys. Lett. 88, 221911 (2006).Google Scholar
13 Spaepen, F., Acta Metall. 25, 407 (1976).Google Scholar
14 Liu, C T, Heatherly, L, Easton, D S, Carmichael, C A, Schneibel, J.H., Chen, C.H., Wright, J.L., Yoo, M.H., Horton, J.A., Inoue, A., Metall. Mater. Tran. 29A, 1811 (1998).Google Scholar
15 Kim, J.-J., Choi, Y., Suresh, S., Argon, A.S., Science 295, 654 (2002).Google Scholar