Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T01:57:42.611Z Has data issue: false hasContentIssue false

Resist Materials and Nanolithography

Published online by Cambridge University Press:  10 February 2011

Elizabeth A. Dobisz*
Affiliation:
Electronics Science and Technology Division, Naval Research Laboratory, Washington DC 20375
Get access

Abstract

The work focuses on lithographic processes and materials for sub-50 nm lithography. Lithographic results of polymethyl methacrylates of molecular weights of 50,000, 100,000, 496,000, and 950, 000 are compared. It was found that the molecular weight and developer concentration do not affect smallest linewidth, within experimental error. However, the molecular weight does affect the line-to-line resolution in dense gratings of 40–60 nm in contrast and developer induced swelling. 40 nm period gratings are shown. The work next examines the use of chemically amplified resists for nanofabrication, with a focus on SAL-601. Sub-50 nm lines are defined with latitude of an order of magnitude in dose and a factor of two in post exposure bake time. The results are modeled with a diffusion reaction kinetic model and an approach to optimize resolution and reproducibility is presented. Challenges to attaining the ultimate resolution and line-to-line resolution in polymeric resists include contrast, mechanical stability, swelling, and adhesion. Metal binding self assembled monolayers (SAMs) are presented a class of resists, that circumvent the latter three complications. Work at the Naval Research Laboratory on SAM resists is outlined.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Broers, A.N.. Proc. First International Conference on Electron and Ion Beam Technology. ed. Bakish, R.. p. 181. New York: John Wiley & Sons. Inc. (1964).Google Scholar
2.Hailer, I.. Hatzakis, N.. and Srinivasan, R.. IBM J. Res. Dev. 12, 251 (1968).Google Scholar
3.Broers, A.N.. Harper, J.M.E.. and Molzen, W.W.. Appl. Phys. Lett. 33, 392 (1978).Google Scholar
4.Craighead, H.G.. Howard, R.E.. Jackel, L.D.. and Mankiewich, P.M.. Appl. Phys. Lett. 42. 38 (1983). H.G. Craighead. J. Appl. Phys. 55. 4430 (1984).Google Scholar
5. SIA Roadmap. 1997.Google Scholar
6. Nano. private communication.Google Scholar
7.Perkins, F.K.. Dobisz, E.A.. Brandow, S.L.. Calvert, J.M.. Kosakowski, J.E.. Marrian, C.R.K.. Appl. Phys. Lett. 68. 550 (1996).Google Scholar
8.Calvert, J.M.. J. Vac. Sci. Technol. B 11,2155 (1993) and references therein.Google Scholar
9.Perkins, F.K.. Dobisz, E.A.. Brandow, S.L.. Koloski, T.S.. Calvert, J.M.. Rhee, K.W.. Kosakowski, J.E.. Marrian, C.R.K.. J. Vac. Sci. Technol. B 12, 3725 (1994).Google Scholar
10.Marrian, C.R.K., Perkins, F.K., Brandow, S.L., Koloski, T.S., Dobisz, E.A., and Calvert, J.M., Appl. Phys. Lett., 64, 390 (1994).Google Scholar
11.Marrian, C.R.K., Perkins, F.K., Park, D., Dobisz, E.A., Peckerar, M.C., Rhee, K.W., and Bass, R., J. Vac. Sci. Technol. B 14, 3864 (1996).Google Scholar
12.Chang, T.H.P., J. Vac. Sci. Technol., 12, 1271 (1975).Google Scholar
13.Dobisz, E.A. and Marrian, C.R.K., SPIE Proc. (1997).Google Scholar
14.Dobisz, E.A. and Marrian, C.R.K., J. Vac. Sci. Technol., B 15, 2327 (1997).Google Scholar
15Dobisz, E.A., Brandow, S.L., Bass, R., Shirey, L.M., J. Vac. Sci. Technol., B 16, (1998).Google Scholar
16.Dobisz, E.A., Brandow, S.L., Bass, R., Shirey, L.M., Appl. Phys. Lett., (1999).Google Scholar
17.Tanford, C., Physical Chemistry, of Macromolecules, pp. 151–, 307– 310 (New York, John Wiley & Sons, 1961).Google Scholar
18.Dobisz, E. A., Brandow, S.L., Snow, E.S., and Bass, R., J. Vac. Sci. Technol., B15, 2318 (1997).Google Scholar
19.Dobisz, E.A., Brandow, S.L., Bass, R., and Mitterender, J., J. Vac. Sci. Technol., B18 (to be published Jan/Feb, 2000).Google Scholar
20.Tanford, C., Op. Cit., pp.603–.Google Scholar
21.Baxendale, J.H., Bywater, S., and Evans, M.G., Trans. Faraday Soc., 42, 675 (1946).Google Scholar
22.Chen, W. and Ahmed, H.,. J. Vac. Sci. Technol., B 11, (1993).Google Scholar
23.Namatsu, H., J. Vac. Sci. Technol., B 17, (1999).Google Scholar
24.Dobisz, E.A. & Marrian, C.R.K., J. Vac. Sci. Technol., B9, 3024 (1991).Google Scholar
25.Dobisz, E.A., Marrian, C.R.K., Shirey, L.M., Ancona, M., J. Vac. Sci. Technol., B10, 3067 (1992).Google Scholar
26.Dobisz, E.A., Marrian, C.R.K., Salvino, R.E., Ancona, M.A., Perkins, F.K., and Turner, N.H., J. Vac. Sci. Technol., B11, 2733 (1993).Google Scholar
27.Yoshimura, T., Nakayama, Y., and Okazaki, S., J. Vac. Sci. Technol., B10, 2615 (1992).Google Scholar
28.Dobisz, E.A. and Marrian, C.R.K., Appl. Phys. Lett., 58, 2526 (1991).Google Scholar
29.Perkins, F.K., Dobisz, E.A., and Marrian, C.R.K., J. Vac. Sci. Technol., B11, 2597 (1993).Google Scholar
30.EddyJr, C.R.., Dobisz, E.A., Meyer, J.R., Hoffman, C., J. Vac. Sci. Technol., A11, 1763 (1994).Google Scholar
31.Hector, S.D., Chu, W., Thompson, M., Pol, V., Dauksher, B., Cummings, K., Resnick, D., Pendharkar, S., Maldonaldo, J., McCord, M., Krasnopernova, A., Liebmann, L., Silverman, J., Guo, J., Khan, M., Bollepalli, S., Capodieci, L., and Cerrina, F., J. Vac. Sci. Technol., B14, 4288 (1996).Google Scholar
32.Zuniga, M.A. and Neureuther, A.R., J. Vac. Sci. Technol., B14, 4221 (1996).Google Scholar
33.Gamsky, C.J., Dentinger, P.M., Howes, G.R., & Taylor, J.W., SPIE Proc., 2438, 143 (1995).Google Scholar
34.Yamaguchi, A., Kishimura, S., Tsujita, K., Morimoto, H., Tsukamota, K., Nagata, H., J. Vac. Sci. Technol. B11, 2867 (1993).Google Scholar
35.Thackeray, James W., Orsula, George W., Mark Denison, SPIE Proc., 2195, 152 (1994).Google Scholar
36.Dobisz, E.A., Fedynyshyn, T.N., Bass, R., Ma, D., and Shirey, L.M., J. Vac. Sci. Technol., B 16, (1998).Google Scholar
37.Fedynyshyn, T.N., Szmanda, C.F., Blacksmith, R.F., Houck, W.E., and Root, J.C., J. Vac. Sci. Technol. B 11, 2798 (1993).Google Scholar
38.Brandow, S.L., Calvert, J.M., Dressick, W.J., and Dulcey, C.S., Navy Case 78,658; 8 September 1999.Google Scholar